Return to search

Fluid-Structure Interaction in an Isolated Nuclear Power Plant Comparing Linear and Nonlinear Fluid Models

The long-term operational safety of nuclear power plants is of utmost importance. Seismic isolation has been shown to be effective in reducing the demands on structures in many applications, including nuclear power plants (NPP). Many designs for Generation III+ NPP include a large passive cooling tank as a measure of safety that can be used during power failure. In a large seismic event, the fluid in the tank may be excited, and while the phenomenon of fluid-structure interaction (FSI) has also been studied in the context of base isolated liquid storage tanks, the effect on seismically isolated NPP has not yet been explored. This thesis presents a two-part study on a base isolated NPP with friction pendulum bearings. The first part of the study compares the usage of a linear fluid model to a nonlinear fluid model in determining tank and structural demand parameters. The linear fluid model was found to represent the nonlinear fluid model well for preliminary analysis apart from peak sloshing height, which it consistently underestimated. The second part of the study uses a linear fluid model, an empty tank model and a rigid fluid model to investigate the influence of FSI on the structural response of an isolated NPP compared to a fixed base NPP. In general, the response of a fixed base NPP considering FSI using a linear fluid model can typically be bound by the results assuming an empty tank and assuming a full tank with rigid fluid mass. However, this does not hold for the base isolated NPP, as the peak isolation displacement for an NPP with a linear fluid model at design depth is greater than the peak isolation displacement than the same NPP with an empty tank and with a rigid fluid model. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25419
Date January 2020
CreatorsHoekstra, Joshua
ContributorsTait, Michael, Becker, Tracy, Civil Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds