This dissertation focuses on two areas of garnet porphyroblast crystallization that have until now remained largely uninvestigated: epitaxial nucleation of garnet porphyroblasts and yttrium and rare earth (Y+REE) uptake in metamorphic garnet. The mechanism of epitaxial nucleation is explored as a step towards determining which aspects of interfaces are significant to interfacial energies and nucleation rates. Garnet from the aureole of the Vedrette di Ries tonalite, Eastern Alps, shows a clear case of epitaxial nucleation in which garnet nucleated on biotite with (110)grt || (001)bt with [100]grt || [100]bt. The occurrence is remarkable for the clear genetic relationships revealed by the microstructures and for its preservation of the mica substrate, which allows unambiguous determination of the coincident lattice planes and directions involved in the epitaxy. Not all epitaxial nucleation is conspicuous; to increase the ability to document epitaxial relationships between garnet and micas, I develop and apply a method for determining whether evidence for epitaxial nucleation of garnet is present in porphyroblasts containing an included fabric. Although the magnitude of uncertainties in orientation measurements for garnets from Passo del Sole (Switzerland), the Nevado Filabride Complex (Spain), and Harpswell Neck (USA) preclude definitive identification of epitaxial relationships, the method has potential to become a viable technique for creating an inventory of instances and orientations of epitaxial nucleation with appropriate sample selection. Using lattice-dynamics simulations, I explore the most commonly documented epitaxial relationship, (110)grt || (001)ms. The range of interfacial energies resulting from variations in the intracrystalline layer within garnet at the interface, the initial atomic arrangement at the interface, and the rotational orientation of the garnet structure relative to the muscovite structure shows that the intracrystalline layer within garnet has the greatest effect on interfacial energy. A complete understanding of the role of intergranular diffusion for yttrium and rare-earth-element uptake in porphyroblastic garnet is critical because the complexities of Y+REE zoning in garnets and the mechanisms of Y+REE uptake have implications for petrologic interpretations and garnet-based geochronology. Y+REE distributions in garnets from the Picuris Mountains (USA), Passo del Sole (USA), and the Franciscan Complex (USA) imply diverse origins linked to differing degrees of mobility of these elements through the intergranular medium during garnet growth.
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/24995 |
Date | 03 July 2014 |
Creators | Moore, Stephanie Jean |
Contributors | Carlson, William, 1952- |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis, text |
Format | application/pdf |
Page generated in 0.0127 seconds