Return to search

Solidification behaviour of magnesium alloys

Magnesium alloys have been extensively used for structural and functional applications due to their low densities. In order to improve the mechanical properties, grain refinement of the microstructures of magnesium alloys has been studied for many years. However, an effective and efficient grain refiner or refinement technique hasn’t been achieved yet, especially for those with aluminium contained. In this study, solution for this problem has been discovered through further understanding of the solidification process, including the potency and the efficiency of nucleation particles, the role of solute, and the role of casting conditions. First of all, the study suggested that MgO particles can act as nuclei in magnesium alloys by measuring and analyzing the differences in cooling curves with various amount of endogenous MgO particles. The differences indicated that the number density of MgO particles has a huge influence on the microstructure. This idea has been fatherly proved by the inoculation of MgO particles in magnesium alloys because the microstructures have been significantly refined after the inoculation. A new kind of refiner (AZ91D-5wt%MgO) has been developed based on such understandings. Secondly, the study discovered that the role of solute has much smaller effect on the grain size than it was suggested in traditional understandings. The inverse-proportional relationship between the grain size and the solute is highly suspected and the major role of solute is to cause columnar- equiaxed transition. The role of casting conditions has also been studied in order to provide experimental evidence for the existence of melt quenching effect in magnesium alloys. It is shown that various casting conditions, such as pouring temperatures and mould temperatures, have large influence on the critical heat balance temperature after rapid pouring. In this study, a theoretical model based on the analysis of cooling curves is presented for grain size prediction. An analytical model of the advance of equiaxed solidification front is developed based on the understanding of the role of casting conditions. Eventually, all these understandings have been applied to magnesium direct-chill (DC) casting. The refined microstructure of DC cast ingots can further assist in understanding the mechanism of advanced shearing achieved by MCAST unit. The comparison of the ingots with and without melt shearing indicated that the advance shearing device can disperse MgO film into individual particles.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:607509
Date January 2013
CreatorsJiang, Bo
ContributorsFan, Z.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/8407

Page generated in 0.0017 seconds