In recent years, the Helicon Plasma Thruster (HPT) has become one of the most promising technologies of in-space electric propulsion. T4i Technology for Propulsion and Innovation S.P.A. is one of the leading companies working with this new type of systems, and their thruster, REGULUS, is the first HPT ever to be operated in orbit. To better assess the performance of the motor, the company has developed, in conjunction with the University of Padova and the University of Bologna, a numerical tool called 3DVIRTUS (3Dimensional adVanced fluId dRifT diffUsion plaSma solver), which simulates the plasma dynamics in the production stage of the thruster. The model describes the species present in the plasma (electrons, ions, excited and neutrals) by means of a fluid approach, as the plasma density in this part of the motor is in the order of 1017-1018 m−3. Particularly, the tool considers the Drift-Diffusion (DD) approximation instead of the full set of fluid momentum equations. Unfortunately, for typical discharges applied to HPTs, this assumption is accurate only for the electrons species, but not for the heavy species in the plasma, i.e. ions, excited and neutrals. The thesis project presented in this report, executed in collaboration with T4i S.P.A, proposes an updated numerical tool which solves the fully coupled continuity and momentum equations for the neutrals species in the plasma. The new solver is implemented with OpenFOAM®, a finite volume library written in C++, and the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) is utilised to resolve the pressure-velocity coupling in the continuity and momentum equations. Four different test cases are considered: a one-dimensional typical discharge, a cylindrical discharge, the Schwabedissen GECICP reactor experiment and the Piglet helicon reactor of Lafleur. The obtained results have been compared against the original drift-diffusion solver, and when available, with experimental data. The new tool produced similar results to the older one, even though the neutrals density computed with the former generally presented stronger gradients. Additionally, in the case of the GECICP and Piglet reactors, the agreement in terms of electrons density computed with the new solver was satisfactory compared to the empirical data. Nevertheless, all the analysis performed during the thesis project revealed that the keys to obtain physically realistic results are the boundary conditions for the neutrals’ pressure and velocity, which greatly affects the outcome of the simulations. Overall, the new solver has shown to provide accurate results with reasonable computational time. / Under de senaste åren har Helicon Plasma Thruster (HPT) blivit en av de mest lovande teknikerna för elektrisk framdrift i rymden. T4i Technology for Propulsion and Innovation S.P.A. är ett av de ledande företagen som arbetar med denna nya typ av system, och deras motor, REGULUS, är den första HPT som har demonstrerats fungera i omloppsbana. För att bättre kunna bedöma motorns prestanda har företaget tillsammans med universitetet i Padova och universitetet i Bologna utvecklat ett numeriskt verktyg som kallas 3DVIRTUS (3Dimensional adVanced fluId dRifT diffUsion plaSma solver), som simulerar plasmadynamiken i thrusterns produktionsstadium. Modellen beskriver de typer av partikler som finns i plasma (elektroner, joner, exciterade och neutrala) med hjälp av en vätskeapproximation, eftersom plasmatätheten i denna del av motorn är i storleksordningen 10171018 m−3. Särskilt överväger verktyget approximationen Drift-Diffusion (DD) istället för hela uppsättningen vätska ekvationer. Dessvärre, för typiska urladdningar som appliceras på HPT, är detta antagande korrekt endast för elektroner, men inte för de tunga partiklarna i plasma, dvs joner, exciterade och neutrala partiklar. Avhandlingsprojektet som presenteras i denna rapport, utfört i samarbete med T4i S.P.A, föreslår ett uppdaterat numeriskt verktyg som löser de fullständigt kopplade kontinuitets och rörelseekvationerna för neutrala partiklar i plasma. Den nya lösaren implementeras med OpenFOAM®, ett begränsat volymbibliotek skrivet i C++, och Semi-Implicit Method for Pressure Linked Equations (SIMPLE) används för att lösa tryck hastighetskopplingen i kontinuitets och rörelseekvationer. Fyra olika testfall övervägs: en endimensionell typisk urladdning, en cylindrisk urladdning, Schwabedissen GECICP reaktorförsöket och Piglet helicon reaktorn i Lafleur. De erhållna resultaten har jämförts med det ursprungliga driftdiffusions antagandet, och när möjligt, med experimentella data. Det nya verktyget gav liknande resultat som det äldre, även om densiteten av neutrala partiklar beräknad med den tidigare generellt visade starkare gradienter. Dessutom, när det gäller GECICP och Piglet reaktorerna, var överenskommelsen i termer av elektrontäthet beräknad med den nya lösaren tillfredsställande jämfört med empiriska data. Ändå avslöjade all analys som gjordes under avhandlingsprojektet att nycklarna för att få fysiskt realistiska resultat är randvillkoren för de neutrala partiklarnas tryck och hastighet, vilket i hög grad påverkar resultatet av simuleringarna. Sammantaget har den nya lösaren visat sig ge noggranna resultat med rimlig beräkningstid.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-308845 |
Date | January 2021 |
Creators | Zorzetto, Alberto |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:905 |
Page generated in 0.0034 seconds