L’urbanisation croissante fait émerger des enjeux sociétaux et environnementaux relatifs à la pollution atmosphérique et au microclimat urbain. La compréhension des phénomènes physiques de transport de quantité de mouvement, de chaleur et de masse entre la canopée urbaine et la couche limite atmosphérique est primordiale pour évaluer et anticiper les impacts négatifs de l’urbanisation. Les processus turbulents spécifiques à la couche limite urbaine sont étudiés par une approche de simulation des grandes échelles, dans une configuration urbaine représentée par un arrangement de cubes en quinconce. Le modèle de sous-maille de type Smagorinsky dynamique est implémenté pour mieux prendre en compte l’hétérogénéité de l’écoulement et les retours d’énergie des petites vers les grandes structures. Le nombre de Reynolds basé sur la hauteur du domaine et la vitesse de l’écoulement libre est de 50000. L’écoulement est résolu dans les sous-couches visqueuses et le maillage est raffiné dans la canopée. Le domaine est composé de 28 millions de cellules. Les résultats sont comparés à la littérature et aux données récentes obtenues dans la soufflerie du LHEEA. Chaque contribution au bilan d’énergie cinétique turbulente est calculée directement en tout point. Cette information, rare dans la littérature, permet d’étudier les processus dans la sous couche rugueuse. Grâce à ces résultats 3D, l’organisation complexe de l’écoulement moyen (recirculations, vorticité, points singuliers) est analysée en relation avec la production de turbulence. Enfin, une simulation où les obstacles sont remplacés par une force de traînée équivalente est réalisée à des fins d’évaluation de cette approche. / The rapid development of urbanization raises social and environmental challenges related to air pollution and urban climate. Understanding the physical processes of momentum, heat, and mass exchanges between the urban canopy and the atmospheric boundary-layer is a key to assess,predict and prevent negative impacts of urbanization. The turbulent processes occurring in the urban boundary-layer are investigated using computational fluid dynamics (CFD). The unsteady flow over an urban-like canopy modelled by a staggered arrangement of cubes is simulated using large eddy simulation (LES). Considering the highspatial and temporal in homogeneity of the flow, a dynamic Smagorinsky subgrid-scale model is implemented in the code to allow energyback scatter from small to large scales. The Reynolds number based on the domain height and free-stream velocity is 50000. The near-wall viscous sub-layers are resolved and the grid is refined in the canopy resulting in about 28 million grid cells. LES results are assessed by comparison with literature and data recently acquired in the wind tunnel of the LHEEA. The turbulent kinetic energy budget in which all contributions are independently computed is investigated. These rarely available data are used to analyse the turbulent processes in the urban canopy. By taking advantage of the three-dimensionality of the simulated flow, the complex 3D time-averaged organization of the flow (recirculation, vorticesor singular points) is analyzed in relation with production of turbulence. Finally a drag approach where obstacles are replaced by an equivalent drag force is implemented in the same domain and results are compared to obstacle-resolved data.
Identifer | oai:union.ndltd.org:theses.fr/2018ECDN0062 |
Date | 20 December 2018 |
Creators | Tian, Geng |
Contributors | Ecole centrale de Nantes, Calmet, Isabelle |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds