Aerobiological sampling using unmanned aerial vehicles (UAVs) is an exciting research field blending various scientific and engineering disciplines. The biological data collected using UAVs helps to better understand the atmospheric transport of microorganisms. Autopilot-equipped UAVs can accurately sample along pre-defined flight plans and precisely regulated altitudes. They can provide even greater utility when they are networked together in coordinated sampling missions: such measurements can yield further information about the aerial transport process.
In this work flight vehicle path planning, control and coordination strategies are considered for unmanned autonomous aerial vehicles. A time-optimal path planning algorithm, that is simple enough to be solved in real time, is derived based on geometric concepts. The method yields closed-form solution for an important subset of candidate extremal paths; the rest of the paths are found using a simple numerical root-finding algorithm. A multi-UAV coordination framework is applied to a specific control-volume sampling problem that supports aerobiological data-collection efforts conducted in the lower atmosphere.
The work is part of a larger effort that focuses on the validation of atmospheric dispersion models developed to predict the spread of plant diseases in the lower atmosphere. The developed concepts and methods are demonstrated by field experiments focusing on the spread of the plant pathogen <i>Phytophthora infestans</i>. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/29680 |
Date | 07 December 2009 |
Creators | Techy, Laszlo |
Contributors | Aerospace and Ocean Engineering, Woolsey, Craig A., Stilwell, Daniel J., Sultan, Cornel, Hall, Christopher D., Schmale, David G. III |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Techy_Laszlo_Dissertation_Nov2009.pdf |
Page generated in 0.0017 seconds