Return to search

Theoretical and field studies of fluid flow in fractured rocks

A comprehensive methodology of hydraulic testing in fractured rocks is presented. The methodology utilizes geological and geophysical information as background. It consists of conventional single-hole packer tests in conjection with a newly developed cross-hole packer test. The cross-hole method involves injecting fluid into a packed-off interval in one borehole and monitoring hydraulic head variations in packed-off intervals in neighboring boreholes. Borehole orientation is unrelated to the principal hydraulic conductivity directions which, therefore, need not be known a priori. The method yields complete information about the directional nature of hydraulic conductivity in three dimensions on a scale comparable to the distance between the test boreholes. In addition to providing all six components of the hydraulic conductivity tensor, the cross-hole method also yields the specific storage of the fractured rock mass. While the theory behind this method treats the rock as a homogeneous, anisotropic, porous medium, the test provides detailed information about the degree to which such assumptions may actually be vaild in the field. The method may also be useful as a tool for detecting, in the vicinity of the test area, major fractures or faults that have not been intercepted by boreholes. Preliminary results from a granitic site near Oracle in southern Arizona are presented together with details of the instrumentation designed and constructed specifically for that site.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/191082
Date January 1983
CreatorsHsieh, P. A.(Paul A.)
ContributorsNeuman, Shlomo P., Bredehoeft, John D., Simpson, Eugene S., Maddock III, Thomas, Daemen, Jaak J., Glass, Charles E.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeDissertation-Reproduction (electronic), text
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0015 seconds