A Termodinâmica foi concebida através da observação da eficiência no funcionamento mecânico de máquinas que dependiam da troca de temperatura e calor com meio. O paradigma de modelo nesses estudos foram máquinas idealizadas que operavam em ciclos tais como o ciclo de Carnot (o mais eficiente possível) e o ciclo de Otto. Esses ciclos de operação das máquinas ditas térmicas podem ser decompostos em trechos em que processos termodinâmicos, tais como adiabático e isotérmico, atuam. Contudo, embora a compreensão da eficiência no funcionamento dessas máquinas tenha sido o primeiro passo, esta teoria não ficou limitada a tal, se desenvolvendo ao ponto de ser considerada um dos pilares da Física moderna. Atualmente tem-se visto um crescimento substancial dos estudos da Termodinâmica considerando sistemas pequenos e/ou fora do equilíbrio termodinâmico. Resultados curiosos têm sido obtidos quando considerados sistemas pequenos tais que efeitos quânticos têm grande relevância. Nesta situação surge o que tem sido chamado de Termodinâmica quântica: as leis da Termodinâmica sendo obtidas a partir de flutuações descritas pela Mecânica Quântica. Naturalmente, um dos primeiros problemas a ser tratado nesta nova circunstância foi a eficiência de máquinas térmicas. Para a descrição dessas máquinas quânticas foi-se primeiro construído o que seriam os diferentes processos termodinâmicos que guiam o funcionamento da mesma. Baseado nesses resultados, as versões quânticas dos ciclos de Carnot e Otto, através dos quais essas máquinas operavam, foram também determinados e as propriedades das máquinas térmicas puderam ser exploradas e comparadas com seu análogo clássico. Nesta dissertação estudaremos diferentes tipos de máquinas térmicas operando no ciclo de Otto. Essas máquinas são descritas por Hamiltonianos de dois spins 1/2 que apresentam interação. Algumas características desses Hamiltonianos são exploradas e o papel das mesmas sobre a eficiência da máquina foram determinado. Comparamos também esta eficiência com os limites dados pelo ciclo de Carnot e o limite dado pela situação em que o acoplamento entre os spins é nulo. Diferentes situações físicas são exploradas e suas consequências determinadas. Por fim, proporemos algumas discussões sobre o papel da Mecânica Quântica no funcionamento destas máquinas. / Thermodynamics was conceived by observing the efficiency of the mechanical operation of machines that depended on the temperature and heat exchange with the surroundings. The paradigm model in these studies were idealized machines operating in cycles such as the Carnot cycle (the most efficient one) and the Otto cycle. These thermal operating cycles of the machines can be decomposed into parts that thermodynamic processes, such as isothermal and adiabatic, act. However, while the understanding of efficiency in the functioning of these machines has been the first step, this theory was not limited to this, being developed the point of being considered one of the pillars of modern Physics. Currently, it has seen a substantial growth of Thermodynamics studies considering small systems and / or out of equilibrium thermodynamical systems. Curious results have been obtained when considered small systems such that quantum effects are highly relevant. In this situation arises what has been called quantum thermodynamics: the laws of thermodynamics being derived from fluctuations described by Quantum Mechanics. Of course, one of the problems to be addressed in the new condition was the efficiency of heat engines. For a description of these quantum machines first was built what would be the different thermodynamical processes that guide the operation. Based on these results, the quantum versions of Carnot and Otto cycles, through which these machines operate, were also determined and the properties of thermal machines could be explored and compared with its classical analog. This thesis will study different types of heat engines operating in Otto cycle. Such machines are described by two spin 1/2 Hamiltonian presenting interaction. Some characteristics of these Hamiltonians are explored and the role of them on the machine efficiency were determined. We also compared this efficiency with the limits given by the Carnot cycle and the limit given by the situation which the coupling between the spins is zero. Different physical situations are explored and its consequences determined. Finally, we propose some discussions about the role of quantum mechanics in the operation of these machines.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-27042015-163712 |
Date | 19 February 2015 |
Creators | Millena Logrado dos Santos |
Contributors | Diogo de Oliveira Soares Pinto, Lucas Chibebe Celeri, Daniel Mendonça Valente |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds