Overhead transmission lines are periodically inspected using both on-ground and helicopter-aided visual inspection. Factors including sun glare, cloud cover, close proximity to power lines and the rapidly changing visual circumstances make airborne inspection of power lines a particularly hazardous task. In this research, a finite element model is developed that can be used to create the theoretical dispersion curves of an overhead transmission line. The complex geometry of the overhead transmission line is the primary reason for absence of a theoretical solution to get the analytical dispersion curves. The numerical results are then verified with experimental tests using a non-contact and broadband laser detection technique. The methodology developed in this study can be further extended to a continuous monitoring system and be applied to other cable monitoring applications, such as bridge cable monitoring, which would otherwise put human inspectors at risk.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2009-12-7372 |
Date | 2009 December 1900 |
Creators | Kulkarni, Salil Subhash |
Contributors | Hurlebaus, Stefan |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | application/pdf |
Page generated in 0.0021 seconds