Return to search

A modeling trade-off forecasting environment for military aircraft sustainment

One of the overarching goals for military aircraft sustainment is to keep a high proportion of aircraft available despite the need for maintenance. Traditional solutions to this problem require conservative resource estimates, but this is costly. In recent years an overall paradigm shift towards affordability has created pressure to find other options for achieving high values of fleet level metrics. Past efforts at increasing affordability have had mixed success, and as a result such strategies need to be tested early on in the lifetime of a product, ideally before the product is ever fielded.

In order to provide the ability to evaluate the effects of sustainment decisions such as different maintenance paradigms and cost goals, this thesis develops a sustainment modeling environment, known as Sustain-ME, to facilitate open analysis based on the best information available. The goal of creating Sustain-ME is to allow decision makers to define a sustainment scenario and compare different decisions of interest on a common basis. Sustain-ME is a discrete event simulation, which means it efficiently provides a reasonable prediction of operational behavior. This thesis describes the information used to construct Sutain-ME, including the assumptions made for many of the parameters of the modeled sustainment process. It next verifies the behavior of the different elements that make up the sustainment model including operations, maintenance, maintenance paradigms, and the supply chain. Finally a methodology for using SustainME is defined and a demonstration of the types of studies Sustain-ME was built to perform is shown. The demonstration compares three different maintenance paradigms: reactive maintenance, condition based maintenance, and a novel CBM paradigm known as CBM-MiMOSA.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53587
Date08 June 2015
CreatorsSaltmarsh, Elizabeth
ContributorsMavris, Dimitri N.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0017 seconds