Return to search

AN EFFECTIVE PARALLEL PARTICLE SWARM OPTIMIZATION ALGORITHM AND ITS PERFORMANCE EVALUATION

Population-based global optimization algorithms including Particle Swarm Optimization (PSO) have become popular for solving multi-optima problems much more efficiently than the traditional mathematical techniques. In this research, we present and evaluate a new parallel PSO algorithm that provides a significant performance improvement as compared to the serial PSO algorithm. Instead of merely assigning parts of the task of serial version to several processors, the new algorithm places multiple swarms on the available nodes in which operate independently, while collaborating on the same task. With the reduction of the communication bottleneck as well the ability to manipulate the individual swarms independently, the proposed approach outperforms the original PSO algorithm and still maintains the simplicity and ease of implementation.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-1282
Date01 December 2010
CreatorsMaripi, Jagadish Kumar
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses

Page generated in 0.002 seconds