Return to search

Performance Analysis of kNN on large datasets using CUDA & Pthreads : Comparing between CPU & GPU

Several organizations have large databases which are growing at a rapid rate day by day, which need to be regularly maintained. Content based searches are similar searched based on certain features that are obtained from various multi media data. For various applications like multimedia content retrieval, data mining, pattern recognition, etc., performing the nearest neighbor search is a challenging task in multidimensional data. The important factors in nearest neighbor search kNN are searching speed and accuracy. Implementation of kNN on GPU is an ongoing research from last few years, focusing on improving the performance of kNN. By considering these aspects, our research has been started and found a gap in this research area. This master thesis shows effective and efficient parallelism on multi-core of CPU and GPU to compare the performance with single core CPU. This paper shows an experimental implementation of kNN on single core CPU, Mutli-core CPU and GPU using C, Pthreads and CUDA respectively. We considered different levels of inputs (size, dimensions) to evaluate the performance. The experiment shows the GPU outperforms for kNN  when compared to CPU single core with a factor of approximately 5.8 to 16 and CPU multi-core with a factor of approximately 1.2 to 3 for different levels of inputs.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-10830
Date January 2015
CreatorsKankatala, Sriram
PublisherBlekinge Tekniska Högskola, Institutionen för kommunikationssystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds