[Truncated abstract] Advanced laser interferometer gravitational wave detectors require an extremely high optical power in order to improve the coupling between the gravitational wave signal and the optical field. This high power requirement leads to new physical phenomena arising from nonlinear interactions associated with radiation pressure. In particular, detectors with multi-kilometer-long arm cavities containing high density optical fields suffer the possibility of 3-mode opto-acoustic interactions. This involves the process where ultrasonic vibrations of the test mass cause the steady state optical modes to scatter. These 3-mode interactions induce transverse optical modes in the arm cavities, which then can provide positive feedback to the acoustic vibrations in the test masses. This may result in the exponential growth of many acoustic mode amplitudes, known as Parametric Instability (PI). This thesis describes research on 3-mode opto-acoustic interactions in advanced interferometric gravitational wave detectors through numerical investigations of these interactions for various interferometer configurations. Detailed analysis reveals the properties of opto-acoustic interactions, and their dependence on the interferometer configuration. This thesis is designed to provide a pathway towards a tool for the analysis of the parametric instabilities in the next generation interferometers. Possible techniques which could be helpful in the design of control schemes to mitigate this undesirable phenomenon are also discussed. The first predictions of parametric instability considered only single interactions involving one transverse mode and one acoustic mode in a simple optical cavity. ... In Chapter 6, I was able to make use of a new analytical model due to Strigin et al., which describes parametric instability in dual recycling interferometers. To make the solution tractable, it was necessary to consider two extreme cases. In the worst case, recycling cavities are assumed to be resonant for all transverse modes, whereas in the best cases, both recycling cavities are anti-resonant for the transverse modes. Results show that, for the worst case, parametric gain values as high as ~1000 can be expected, while in the best case the gain can be as low as ~ 3. The gain is shown to be very sensitive to the precise conditions of the interferometer, emphasising the importance of understanding the behaviour of the detectors when the cavity locking deviates from ideal conditions. Chapter 7 of this thesis contains work on the observation of 3-mode interactions in an optical cavity at Gingin, which confirms the analysis presented here, and also a paper which shows how the problem of 3-mode interactions can be harnessed to create new devices called opto-acoustic parametric amplifiers. In the conclusions in Chapter 8, I discuss the next important steps in understanding parametric interactions in real interferometers including the need for more automated codes relevant to the design requirements for recycling cavities. In particular, it is pointed out how the modal structure of power and signal recycling cavities must be understood in detail, including the Gouy phase for each transverse mode, to be able to obtain precise predictions of parametric gain. This thesis is organised as a series of papers which are published or have been submitted for publication. Such writing style fills the condition for Ph.D. thesis at the University of Western Australia.
Identifer | oai:union.ndltd.org:ADTP/290629 |
Date | January 2009 |
Creators | Gras, Slawomir M. |
Publisher | University of Western Australia. School of Physics |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Slawomir M. Gras, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0021 seconds