Return to search

Full-waveform inversion in three-dimensional PML-truncated elastic media : theory, computations, and field experiments

We are concerned with the high-fidelity subsurface imaging of the soil, which commonly arises in geotechnical site characterization and geophysical explorations. Specifically, we attempt to image the spatial distribution of the Lame parameters in semi-infinite, three-dimensional, arbitrarily heterogeneous formations, using surficial measurements of the soil's response to probing elastic waves. We use the complete waveforms of the medium's response to drive the inverse problem. Specifically, we use a partial-differential-equation (PDE)-constrained optimization approach, directly in the time-domain, to minimize the misfit between the observed response of the medium at select measurement locations, and a computed response corresponding to a trial distribution of the Lame parameters. We discuss strategies that lend algorithmic robustness to the proposed inversion schemes. To limit the computational domain to the size of interest, we employ perfectly-matched-layers (PMLs). The PML is a buffer zone that surrounds the domain of interest, and enforces the decay of outgoing waves. In order to resolve the forward problem, we present a hybrid finite element approach, where a displacement-stress formulation for the PML is coupled to a standard displacement-only formulation for the interior domain, thus leading to a computationally cost-efficient scheme. We discuss several time-integration schemes, including an explicit Runge-Kutta scheme, which is well-suited for large-scale problems on parallel computers. We report numerical results demonstrating stability and efficacy of the forward wave solver, and also provide examples attesting to the successful reconstruction of the two Lame parameters for both smooth and sharp profiles, using synthetic records. We also report the details of two field experiments, whose records we subsequently used to drive the developed inversion algorithms in order to characterize the sites where the field experiments took place. We contrast the full-waveform-based inverted site profile against a profile obtained using the Spectral-Analysis-of-Surface-Waves (SASW) method, in an attempt to compare our methodology against a widely used concurrent inversion approach. We also compare the inverted profiles, at select locations, with the results of independently performed, invasive, Cone Penetrometer Tests (CPTs). Overall, whether exercised by synthetic or by physical data, the full-waveform inversion method we discuss herein appears quite promising for the robust subsurface imaging of near-surface deposits in support of geotechnical site characterization investigations.

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/30515
Date03 September 2015
CreatorsFathi, Arash
ContributorsKallivokas, Loukas F.
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0059 seconds