Human reasoning often involves explanation. In everyday affairs, people reason to hypotheses based on the explanatory power these hypotheses afford; I might, for example, surmise that my toddler has been playing in my office because I judge that this hypothesis delivers a good explanation of the disarranged state of the books on my shelves. But such explanatory reasoning also has relevance far beyond the commonplace. Indeed, explanatory reasoning plays an important role in such varied fields as the sciences, philosophy, theology, medicine, forensics, and law.
This dissertation provides an extended study into the logic of explanatory reasoning via two general questions. First, I approach the question of what exactly we have in mind when we make judgments pertaining to the explanatory power that a hypothesis has over some evidence. This question is important to this study because these are the sorts of judgments that we constantly rely on when we use explanations to reason about the world. Ultimately, I introduce and defend an explication of the concept of explanatory power in the form of a probabilistic measure. This formal explication allows us to articulate precisely some of the various ways in which we might reason explanatorily.
The second question this dissertation examines is whether explanatory reasoning constitutes an epistemically respectable means of gaining knowledge. I defend the following ideas: The probability theory can be used to describe the logic of explanatory reasoning, the normative standard to which such reasoning attains. Explanatory judgments, on the other hand, constitute heuristics that allow us to approximate reasoning in accordance with this logical standard while staying within our human bounds. The most well known model of explanatory reasoning, Inference to the Best Explanation, describes a cogent, nondeductive inference form. And reasoning by Inference to the Best Explanation approximates reasoning directly via the probability theory in the real world. Finally, I respond to some possible objections to my work, and then to some more general, classic criticisms of Inference to the Best Explanation. In the end, this dissertation puts forward a clearer articulation and novel defense of explanatory reasoning.
Identifer | oai:union.ndltd.org:PITT/oai:PITTETD:etd-05152011-215555 |
Date | 30 September 2011 |
Creators | Schupbach, Jonah N. |
Contributors | John Norton, David Danks, Stephan Hartmann, John Earman, Edouard Machery |
Publisher | University of Pittsburgh |
Source Sets | University of Pittsburgh |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.library.pitt.edu/ETD/available/etd-05152011-215555/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0108 seconds