Return to search

Photoluminescence study of ZnO materials

 Zinc oxide (ZnO) is a wide band gap (3.4eV at 300K) II-VI semiconductor with an exciton binding energy up to 60meV and is promising in the realization of excitonic or polaritonic lasing effect. Photoluminescence is widely used in studying the band gap and defect levels of ZnO. However, understanding in defects of ZnO is still far from satisfaction and remains controversial. Different authors suggest different explanations and mechanisms.

 In the present study we investigate in the photoluminescence spectra of four kinds of ZnO single crystal, namely as-grown (not implanted) Zn-face polished, Zn-implanted, O-implanted and He-implanted. The samples are annealed both in air and argon gas at a temperature of 350, 650, 750, 900 and 1200oC. The results show that O-implanted sample is weaker in excitonic emission and has an annealing effect tendency not consistent with that of Zn-implanted and He-implanted. Ion implantation would introduce defects in favor of yellow luminescence and the defects would anneal out gradually as the annealing temperature is rising. / published_or_final_version / Physics / Master / Master of Philosophy

  1. 10.5353/th_b4715359
  2. b4715359
Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/145700
Date January 2011
CreatorsXiao, Bin, 肖斌
ContributorsFung, SHY, Ling, FCC
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
Sourcehttp://hub.hku.hk/bib/B47153593
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.0027 seconds