Return to search

The scattering and shrinking of a Gaussian wave packet by delta function potentials

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 59). / In this thesis, we wish to test the hypothesis that scattering by a random potential causes localization of wave functions, and that this localization is governed by the Born postulate of quantum mechanics. We begin with a simple model system: a one-dimensional Gaussian wave packet incident from the left onto a delta function potential with a single scattering center. Then we proceed to study the more complicated models with double and triple scattering centers. Chapter 1 briefly describes the motivations behind this thesis and the phenomenon related to this research. Chapter 2 to Chapter 4 give the detailed calculations involved in the single, double and triple scattering cases; for each case, we work out the exact expressions of wave functions, write computer programs to numerically calculate the behavior of the wave packets, and use graphs to illustrate the results of the calculations. In Chapter 5, we study the parameters that determine how much the wave function shrinks, including the initial width, the initial position and the momentum of the Gaussian wave packet, and the strength of and the spacing between the delta functions; then we examine different combinations of the parameters in order to find a pattern to achieve maximum shrinking. Chapter 6 concludes the thesis with the essential results of this research as well as its implications and potentials. / by Fei Sun. / S.B.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/78487
Date January 2012
CreatorsSun, Fei, S.B. Massachusetts Institute of Technology
ContributorsEdmund Bertschinger., Massachusetts Institute of Technology. Department of Physics., Massachusetts Institute of Technology. Department of Physics.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format59, [22] p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0128 seconds