Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2008. / Includes bibliographical references (p. 189-202). / The central claim of this thesis is that nanoscale devices offer a platform to study and demonstrate new forms of control over both quantum and classical degrees of freedom in solid-state systems. To support this claim, I present a series of theoretical discussions that demonstrate how static and/or time-varying fields can be used to control spin degrees of freedom in GaAs quantum dots. This work is motivated by recent experiments in single and double quantum dots that have demonstrated many interesting phenomena arising from the coupled dynamics of electron and nuclear spins. In addition, I will present some results on the control of superconducting flux qubits, obtained in collaboration with the Orlando group at MIT. The control techniques discussed in this thesis may help provide new directions for experimental research on nuclear spin dynamics in solids, and may be applied to help enable future spintronics or quantum information processing tasks. / by Mark S. Rudner. / Ph.D.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/45443 |
Date | January 2008 |
Creators | Rudner, Mark S. (Mark Spencer) |
Contributors | Leonid Levitov., Massachusetts Institute of Technology. Dept. of Physics., Massachusetts Institute of Technology. Dept. of Physics. |
Publisher | Massachusetts Institute of Technology |
Source Sets | M.I.T. Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 202 p., application/pdf |
Rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582 |
Page generated in 0.0022 seconds