Return to search

Radio-frequency spectroscopy of ultracold atomic Fermi gases / Radiofrequency spectroscopy of strongly interacting Fermions

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 143-154). / This thesis presents experiments investigating the phase diagram of ultracold atomic Fermi gases using radio-frequency spectroscopy. The tunability of many experimental parameters including the temperature, the interparticle interaction strength and the relative population of different Fermions allows to access very different physical regimes. Radio-frequency spectroscopy has been developed into an ideal tool to probe correlations between particles in these different phases. In particular, radio-frequency spectroscopy of highly population imbalanced atomic Fermi systems gives access to the impurity problem: A single Fermion, or Boson, immersed in a sea of Fermions constitutes a polaron, which can be described by Landau's Fermi liquid theory. A critical interaction strength can be identified separating the regime of a fermionic polaron and a bosonic polaron. Radio-frequency spectroscopy of the polarized superfluid phase allows an accurate measure of the superfluid gap [Delta] and allows to identify the importance of Hartree Mean-field energies. Furthermore, it is shown how these different physical regimes are connected. / by Andre Schirotzek. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/77482
Date January 2010
CreatorsSchirotzek, Andre
ContributorsWolfgang Ketterle and Martin W. Zwierlein., Massachusetts Institute of Technology. Dept. of Physics., Massachusetts Institute of Technology. Dept. of Physics.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format154 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0021 seconds