Return to search

Atomic quantum memory for photon polarization

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2008. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (leaves 79-82). / Using an ensemble of ultracold Cesium atoms in an optical cavity we demonstrate the efficient storage and retrieval of quantum information in the form of single photons. We use a photon that has scattered into the cavity mode to herald a successful creation of a collective excitation of Cesium atoms and hence our ability to retrieve a photon from the stored excitation at a later time. Post-selecting out only data that was preceded by a heralding photon we have achieved single-photon recovery efficiencies as high as 84%. We construct an atomic quantum memory for arbitrary optical polarization states using this technique on two spatially overlapped atomic samples. The two samples constitute a quantum memory making use of a bijective mapping between a photon polarization and a shared collective excitation in the atoms. The stored state is later retrieved as a single-photon polarization state. This memory showed an average fidelity of 0.93(5) for the recovered fiducial states as well as a conditional autocorrelation function g2 = 0.24(6), indicating the single-photon nature of the retrieved photons. In this thesis, a general discussion of the techniques employed and their background theory will be given, followed by a more detailed explanation of this most recent experiment. / by Benjamin Jacob Bloom. / S.B.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/44214
Date January 2008
CreatorsBloom, Benjamin Jacob, S.B. Massachusetts Institute of Technology
ContributorsVladan Vuletić., Massachusetts Institute of Technology. Dept. of Physics., Massachusetts Institute of Technology. Dept. of Physics.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format82 leaves, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0021 seconds