Return to search

Seasonal rainfall influences on main pollutants in the Vaal River barrage reservoir: a temporal-spatial perspective

M.A. / South Africa is situated within a semi-arid part of the world which is characterised by high seasonal variability in terms of rainfall and runoff, with high evaporation rates. This causes streamflow to be relatively low for most of the year, with seasonal sporadic high flows. Further stress is applied to the water resource through population growth, increased urbanisation and industrial activities. The study area is considered to be the most populated of the Upper Vaal Water Management Area (WMA), which is the most important WMA in terms of economic productivity in South Africa. This research report focused on assessing the temporal and spatial variations of pollution between four different sampling points located in the Vaal Barrage Reservoir, which is located in the heart of the Upper Vaal WMA. The Vaal River Barrage Reservoir forms a 64 kilometres long water body with an estimated total storage capacity of 63 million litres of water. The four sampling points are V2 (Vaal River at Engelbrechts Drift Weir); VRB 24 (Vaal River Barrage at 24 km); VRB 37 (Vaal River Barrage at 37 km) and V17 (Vaal Barrage Reservoir Outlet). The aim of this research is to determine the type of physical and chemical pollutants within the Vaal River Barrage which currently poses the biggest problem to river health. The spatial and temporal differences of the pollutant loads are established and discussed. In addition, it is determined what the seasonal influence of rainfall has on the water quality measured at the four different sampling points. Chemical pollutants which currently pose the biggest threat in terms of water quality for the Vaal Barrage Reservoir are Phosphates, Electrical Conductivity and Sulphates. These three water quality variables do not comply with the minimum standards as set by Rand Water. The occurrence of these pollutants in the Vaal River can be explained by the vast inputs of return flow water from sewage treatment plants, underground mine water and discharge from industries. Microbiological factors were not taken into consideration for this dissertation, due to the unavailability of the data for most of the sampling sites for the majority of the study period. It was found that there are seasonal variations in terms of water quality at three sampling points: VRB24, VRB37 and V17. Sample point V17 had the highest inverse correlation for the three pollutants which pose the biggest threat to the health of the Vaal Barrage Reservoir water body. This implies that high seasonal variability occurs in the pollutant load at this sampling point. Sample point V2 had extremely low inverse correlation figures, which implies that rainfall has little or no impact on the level/concentration of a pollutant. This can be explained by two factors. Firstly the dilution effect which water released from the Vaal Dam has due to the close proximity to V2. Secondly because urban, mining and industrial activities are much less evident at this point, and subsequently return flows are less.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:8341
Date30 April 2009
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds