Return to search

The Design and Synthesis of Aromatic Ion-Based Polyelectrolytes for Divergent Applications

Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications ranging from medicine to energy storage. To expand the design space for innovative cationic polymeric materials, I describe herein the development of a new class of functional polyelectrolyte based on the aromatic trisaminocyclopropenium (TAC) ion. The facile synthesis of a series of cyclopropeniumbased macromolecules via either the direct polymerization of functional monomers or a post-polymerization click reaction is demonstrated. To probe fundamental structureproperty relationships and understand technological implications of cyclopropenium polymers, a variety of materials were evaluated as gene delivery agents for cellular transfection and as ion conducting membranes. It was found that certain cyclopropenium polymers are biocompatible and efficient transfection agents, and that post polymerization functionalization chemistry enabled the straightforward screening of polymeric TAC derivatives. Furthermore, the thermal properties, local morphology, and dielectric response of a series of monomeric and polymeric TAC ionic liquids with different counter ions were characterized. It was found that the mechanism for ion transport depends on the nature of the ion pair, which can promote anomalously high conductivity at the calorimetric glass transition temperature. Finally, the synthesis of a new class of polyelectrolyte based on the cyclopentadienyl aromatic anion is described.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8F77W2S
Date January 2018
CreatorsFreyer, Jessica Leigh
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0021 seconds