Return to search

On the Use of Surface Porosity to Reduce Wake-Stator Interaction Noise

An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of Passive Porosity Technology as a mechanism for alleviating interaction effects and radiated noise by reducing the fluctuating forces acting on the vane surfaces. The study involved a typical high bypass fan stator airfoil immersed in a subsonic free field and exposed to the effects of a transversely moving wake. Time histories of the primitive aerodynamic variables obtained from Computational Fluid Dynamics (CFD) calculations were input into an acoustic prediction code to estimate noise levels at a radial distance of ten chords from the stator airfoil. This procedure was performed on the solid airfoil to obtain a baseline, and on approximately fifty porous configurations in order to isolate those that would yield maximum noise reductions without compromising the aerodynamic performance of the stator.

It was found that, for a single stator immersed in a subsonic flow field, communication between regions of high pressure differential - made possible by the use of passive porosity - tends to induce a time-dependent oscillatory pattern of small inflow-outflow regions near the stator leading edge (LE), which is well established before wake effects come into play. The oscillatory pattern starts at the LE, and travels downstream on both suction and pressure sides of the airfoil. The amplitude of the oscillations seemed to be proportional to the extension of the porous patch on the pressure side. Regardless of this effect, which may not have occurred if the airfoil were placed within a stator cascade, communication between regions of high pressure differential is necessary to significantly alter the noise radiation pattern of the stator airfoil. Whether those changes result in noise abatement or enhancement depends primarily on the placement and extension of the porous patches. For most viable configurations, porosity reduced loading noise but increased thickness noise. Variations in nominal porosity were of secondary importance.

In general, the best aerodynamic performers (i.e., those configurations that were able to reduce unsteady lift without severely altering the lift and/or drag characteristics of the solid airfoil) were also the best acoustic performers. As a result of using passive surface porosity, overall peak radiated noise was reduced by approximately 1.0 dB. This reduction increased to about 2.5 dB when the effects of loading noise alone were considered. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/29123
Date09 October 2001
CreatorsTinetti, Ana Fiorella
ContributorsMechanical Engineering, Kelly, Jeffrey J., Bauer, Steven X. S., Thomas, Russell H., Fuller, Christopher R., Ng, Fai, Wood, Houston
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relationdissertation.pdf

Page generated in 0.0019 seconds