This thesis concentrates on different approaches of solving decision making problems with an aspect of randomness. The basic methodologies of converting stochastic optimization problems to deterministic optimization problems are described. The proximity of solution of a problem and its empirical counterpart is shown. The empirical counterpart is used when we don't know the distribution of the random elements of the former problem. The distribution with heavy tails, stable distribution and their relationship is described. The stochastic dominance and the possibility of defining problems with stochastic dominance is introduced. The proximity of solution of problem with second order stochastic dominance and the solution of its empirical counterpart is proven. A portfolio management problem with second order stochastic dominance is solved by solving the equivalent empirical problem. Powered by TCPDF (www.tcpdf.org)
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:328310 |
Date | January 2013 |
Creators | Odintsov, Kirill |
Contributors | Kaňková, Vlasta, Lachout, Petr |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0025 seconds