Return to search

Portfolio selection of stochastic differential equation with jumps under regime switching

In this thesis, we are interested in the stochastic differential equation with jumps under regime switching. Firstly, we investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection proposed and analyzed for a market consisting of one bank account an d multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. Secondly, we consider the problem of pricing contigent claims on a stock whose price process is modeled by a Levy process. Since the market is incomplete and there is not a unique equivalent martingale measure. We study approaches to pricing options. Finally, we investigate a continuous-time version Markowitz's mean-variance portfolio selection problem which is studied in a market with one bank account, one stock and proportional transaction costs. This is a singular stochastic control problem. Via a series of transformations, the problem is turned into a double obstacle problem.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:678345
Date January 2010
CreatorsZhao, Lin
PublisherSwansea University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://cronfa.swan.ac.uk/Record/cronfa42401

Page generated in 0.0017 seconds