A problem of interest in the power industry is the mitigation of interarea and torsional oscillations. Interarea oscillations are due to the dynamics of interarea power transfer and often exhibit poor damping when the aggregate power transfer over a corridor is high relative to the transmission strength. These oscillations can severely restrict system operations and, in some cases, can lead to widespread system disturbances. Torsional oscillations are induced due to the interaction between transmission system disturbances and turbine-generator shaft systems. The high torsional stresses induced due to some of these disturbances reduce the life expectancy of the turbine-generators and, in severe cases, may cause shaft damage. <p>This thesis reports the development of novel control techniques for Flexible AC Transmission System (FACTS) devices for the purpose of damping power system interarea and torsional oscillations. In this context, investigations are conducted on a typical three-area power system incorporating FACTS devices. The Genetic Algorithm (GA) and fuzzy logic techniques are used for designing the FACTS controllers. Although attention is focused in the investigations of this thesis on the Unified Power Flow Controller (UPFC), studies are also conducted on two other FACTS devices, a three voltage-source converter Generalized Unified Power Flow Controller (GUPFC) and a voltage-source converter back-to-back HVdc link. <p>The results of the investigations conducted in this thesis show that the achieved control designs are effective in damping interarea oscillations as well as the high torsional torques induced in turbine-generator shafts due to clearing and high-speed reclosing of transmission system faults. The controller design procedures adopted in this thesis are general and can be applied to other FACTS devices incorporated in a power system. The results and discussion presented in this thesis should provide valuable information to electric power utilities engaged in planning and operating FACTS devices.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-05172005-121931 |
Date | 18 May 2005 |
Creators | Eldamaty, Amr |
Contributors | Takaya, Kunio, Sharaf, A., Kasap, Safa O., Habibi, Saeid R., Faried, Sherif O., Billinton, Roy |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-05172005-121931/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0017 seconds