Addiction is a chronic disease that characterize as habitual or compulsive involvement in an activity despite it¡¦s bring negative consequences. Some of psystimulants such as cocaine or amphetamine cause a strong reinforcing effects even after prolonged abstinence periods. Such illegal drugs not only hurt on the adult health but also result in fetal physiological damage. For example, that babies born to mothers who abuse with cocaine bring prematurely delivered, low birth weights, smaller head circumferences and increased heart disease in adult offspring.
Mesolimbic dopamine system include nucleus accumbens (NAc) and ventral tegmental area (VTA) are critical regions for the neural adaptations that contribute to addiction. VTA that receives inputs from a large number of brain regions. For example, it receives glutamatergic inputs from prefrontal cortex, or GABAergic inputs from NAc. It has been known that VTA play a major role in the acquisition and expression of learned addictive behaviors. Results from many neuropharmacological studies in animal models indicate that exposure to cocaine or some other drugs of abuse seems to induce long-term potentiation (LTP) ¢w like changes of synaptic plasticity among neurons in VTA region.
LTP was first described in hippocampus, a region that associated with memory formation, and were found widespread events in many mammalian brain sites. In the present time, theories and investigation indicated that memory and addiction might shared the similar neural circuitry and signal pathways. In general, LTP can be separate into two main phases : induction and maintenance phases. Many of molecules participate in induction phase such as calcium/calmodulin-dependent protein kinase II (CaMKII), cyclic AMP (cAMP), phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC). However, until now there was only one molecule has been found associated with LTP maintenance¡Xprotein kinase M£a (PKM£a).
PKM£a is a brain specific, constitutively active form of PKC that does not need Ca2+ or diacylglycerol (DAG) for its activation. Molecular evidences showed that PKM£a is translated uniquely by PKM£a mRNA which is generated under the control of an internal promoter in the PKC£a gene. Recently, investigators introduced a PKM£a selective inhibitor¡XZIP, to hippocampus or insular cortex both successful to eliminate long-term spatial memory or conditioned taste aversion (CTA) behavior, respectively, on rat. Therefore, exclude PKM£a by specific inhibitors and then result in abolish long-term synaptic potentiation which had already established seem to be a leading candidate for cure addiction.
Here we showed that blocked of PKM£a activity in VTA dopaminergic neuron eliminated mEPSCs or AMPAR/NMDAR ratio increment elicited by cocaine. Otherwise, our results also presented that myristoylatedinhibitory peptide¢wZIP had no effect on spike timing-dependent long-term potentiation in rats previously injected with saline but remarkably restored spike timing-dependent long-term potentiation in VTA dopamine neurons in slices prepared from rats that received single or multiple cocaine exposure. Furthermore, our western blot analyses showed that both single and five consecutive cocaine injections induced a significant increase in PKM£a level in VTA or NAc. Moreover, our ex vivo cocaine incubation results indicated that multiple kinases activation or de novo protein synthesis was required for PKM£a increment. The most important, our data provided the first physiological evidence between PKM£a and drug addiction when intracranial administered specific PKM£a inhibitors to VTA reversed cocaine-induced conditioned-place preference (CPP) behavior.
Finally, we investigated the behavioral effect of cocaine-induced locomotor sensitization in an open field apparatus. Our data showed that peri-adolescent (P21) rats exhibited prominently increased in either acute or repeated cocaine-induced locomotor activity than mid-adolescent (P28) and post-adolescent (P41). Interestingly, applied to high dosage cocaine (30 mg/kg) rescued the acute locomotor response in P28 rats but not behavioral sensitization. We further examined the locomotion on rats that were exposed to cocaine in utero after single or multiple cocaine injection. However, cocaine-induced increase in locomotor activity was lower in P21 rats which exposed to cocaine during pregnancy but no significantly difference in P28 rats. Surprisingly, single high dose cocaine treatment caused a marked reduction in locomotor activity on P21 rats prenatally exposed to cocaine. Otherwise, we also provided the first evidences that repeated cocaine injection in pregnant rats induced a significant decreased to KCC2 level in PFC regions prepared from P20 rat.
In conclusion, results from our current studies demonstrate for the first time that persistently active PKM£a is necessary in (1) mEPSC facilitation induced by single cocaine exposure; (2) cocaine-induced enhancement in AMPAR/NMDAR ratio; (3) single or repeated cocaine-induced LTP but not in LTP induced by spike-timing stimulation; and (4) cocaine conditioned place preference in the VTA. In addition, our results also present evidence that the expression of PKM£a is increased by either single or repeated cocaine exposure. Furthermore, our behavioral or Western blotting consequence of cocaine treatment in utero was reflected by the diminishion in the sensitivity of locomotor activity in postnatal rats to cocaine and KCC2 level in PFC regions.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-1022112-133013 |
Date | 22 October 2012 |
Creators | Ho, Shih-Yin |
Contributors | Ming-Hong Tai, Bin-Nan Wu, Jau-Cheng Liou, Ching-Jiunn Tseng, Kun-Ze Lee |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1022112-133013 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0026 seconds