Return to search

Synthetic Applications of Ketene Cycloadditions: Natural and Novel Pyrethroid Insecticides

A new synthetic route to natural and novel pyrethroid acids was developed utilizing ketene cycloaddition which is a significant improvement over existing syntheses. The newly synthesized pyrethroid acids were converted to pyrethroid esters and used to study structure-activity relationships. The cycloaddition of dichloroketene with 2,5-dimethyl-2,4-hexadiene yields (2+2) cycloaddition products, 2,2-dichlorocyclobutanones. The reductive removal of one chlorine atom from these cycloaddition products gave monochlorocyclobutanones which underwent a Favorskii-type ring contraction to yield cis- and trans-chrysanthemic acids. 4-Methyl-1,3-pentadiene was also used as a precursor in this synthetic scheme to yield an analogue of the chrysanthemic acid. These results are consistent with a concerted cycloaddition process involving a dipolar transition state. The zinc reduction is not a regiospecific reaction which accounts for the two regioisomers of the monochlorocyclobutanones. The Favorskii-type ring contraction is a regiospecific reaction. A variety of different bicyclo(3.1.0)alkenecarboxylates and bicyclo(4.1.0)heptenecarboxylates were synthesized from alkylcyclopentadiene and fulvene derivatives. These new bicyclo pyrethroid acids are structurally similar to the natural chrysanthemic acid but are rigid and locked in a single conformation which is likely the least stable conformer of the natural acid. The acids were converted to pyrethroid esters and tested against the housefly and cockroach. The test results indicate that the bicyclo pyrethroids synthesized are not as active as the natural pyrethroid. Apparently, these bicyclo pyrethroids with structures similar to the less stable conformer of the natural pyrethroids are of little consequence as it binds to the target site in the insect. In an effort to learn more about the conformational requirements of the pyrethroid acid, a new bicyclo-spiro pyrethroid system with a structure similar to the most stable conformation of the natural pyrethroid was designed and synthesized. These bicyclo-spiro pyrethroids were derived from a new isopropylidenecyclobutane derivatives as a starting compound instead of a conjugated diene. The test results of these bicyclo-spiro pyrethroid esters revealed a much greater activity against the housefly and cockroach. This study establishes that the more stable conformer of the natural pyrethroid acid provides a much higher toxicity against the insects tested.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc331031
Date08 1900
CreatorsKo, Jinren
ContributorsBrady, William Thomas, Norton, S. J., Jones, Paul R., Russell, Benny
PublisherNorth Texas State University
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formativ, 74 leaves : ill., Text
RightsPublic, Ko, Jinren, Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0047 seconds