Return to search

Training reinforcement learning model with custom OpenAI gym for IIoT scenario

Denna studie består av ett experiment för att se, som ett test, hur bra det skulle fungera att implementera en industriell gymmiljö för att träna en reinforcement learning modell. För att fastställa det här tränas modellen upprepade gånger och modellen testas. Om modellen lyckas lösa scenariot, som är en representation av miljön, räknas den träningsiterationen som en framgång. Tiden det tar att träna för ett visst antal spelavsnitt mäts. Antalet avsnitt det tar för reinforcement learning modellen att uppnå ett acceptabelt resultat på 80 % av maximal poäng mäts och tiden det tar att träna dessa avsnitt mäts. Dessa mätningar utvärderas och slutsatser dras om hur väl reinforcement learning modellerna fungerade. Verktygen som används är Q-learning algoritmen implementerad på egen hand och djup Q-learning med TensorFlow. Slutsatsen visade att den manuellt implementerade Q-learning algoritmen visade varierande resultat beroende på miljödesign och hur länge modellen tränades. Det gav både hög och låg framgångsfrekvens varierande från 100 % till 0 %. Och tiderna det tog att träna agenten till en acceptabel nivå var 0,116, 0,571 och 3,502 sekunder beroende på vilken miljö som testades (se resultatkapitlet för mer information om hur modellerna ser ut). TensorFlow-implementeringen gav antingen 100 % eller 0 % framgång och eftersom jag tror att de polariserande resultaten berodde på något problem med implementeringen så valde jag att inte göra fler mätningar än för en miljö. Och eftersom modellen aldrig nådde ett stabilt utfall på mer än 80 % mättes ingen tid på länge den behöver tränas för denna implementering. / This study consists of an experiment to see, as a proof of concept, how well it would work to implement an industrial gym environment to train a reinforcement learning model. To determine this, the reinforcement learning model is trained repeatedly and tested. If the model completes the training scenario, then that training iteration counts as a success. The time it takes to train for certain amount of game episodes is measured. The number of episodes it takes for the reinforcement learning model to achieve an acceptable outcome of 80% of maximum score is measured and the time it takes to train those episodes are measured. These measurements are evaluated, and conclusions are drawn on how well the reinforcement learning models worked. The tools used is the Q-learning algorithm implemented on its own and deep Q-learning with TensorFlow. The conclusion showed that the manually implemented Q-learning algorithm showed varying results depending on environment design and how long the agent is trained. It gave both high and low success rate varying from 100% to 0%. And the times it took to train the agent to an acceptable level was 0.116, 0.571 and 3.502 seconds depending on what environment was tested (see the result chapter for more information on the environments). The TensorFlow implementation gave either 100% or 0% success rate and since I believe the polarizing results was because of some issue with the implementation I chose to not do more measurements than for one environment. And since the model never reached a stable outcome of more than 80% no time for long it needs to train was measured for this implementation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-45297
Date January 2022
CreatorsNorman, Pontus
PublisherMittuniversitetet, Institutionen för informationssystem och –teknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds