Return to search

A Multiscale Meshless Method for Simulating Cardiovascular Flows

The rapid increase in computational power over the last decade has unlocked the possibility of providing patient-specific healthcare via simulation and data assimilation. In the past 2 decades, computational approaches to simulating cardiovascular flows have advanced significantly due to intense research and adoption of methods in medical device companies. A significant source of friction in porting these tools to the hospital and getting in the hands of surgeons is due to the expertise required to handle the geometry pre-processing and meshing of models. Meshless meth- ods reduce the amount of corner cases which makes it easier to develop robust tools surgeons need. To accurately simulate modifications to a region of vasculature as in surgical planning, the entire system must be modeled. Unfortunately, this is computationally prohibitive even on to- day’s machines. To circumvent this issue, the Radial-Basis Function Finite Difference (RBF-FD) method for solution of the higher-dimensional (2D/3D) region of interest is tightly-coupled to a 0D Lumped-Parameter Model (LPM) for solution of the peripheral circulation. The incompress- ible flow equations are updated by an explicit time-marching scheme based on a pressure-velocity correction algorithm. The inlets and outlets of the domain are tightly coupled with the LPM which contains elements that draw from a fluid-electrical analogy such as resistors, capacitors, and in- ductors that represent the viscous resistance, vessel compliance, and flow inertia, respectively. The localized RBF meshless approach is well-suited for modeling complicated non-Newtonian hemo- dynamics due to ease of spatial discretization, ease of addition of multi-physics interactions such as fluid-structure interaction of the vessel wall, and ease of parallelization for fast computations. This work introduces the tight coupling of meshless methods and LPMs for fast and accurate hemody- namic simulations. The results show the efficacy of the method to be used in building robust tools to inform surgical decisions and further development is motivated.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1375
Date01 January 2024
CreatorsBeggs, Kyle
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Thesis and Dissertation 2023-2024

Page generated in 0.0018 seconds