Return to search

Volatilitätskontrollierte Fraktionierung refraktär-lithophiler Elemente in Meteoriten und der Erde / Volatility-controlled fractionation of refractory lithophile elements in meteorites and the Earth

Im frühen Sonnensystem fanden während der Kondensation der chemischen Elemente volatilitätskontrollierte Fraktionierungsprozesse statt. Gegenstand dieser Doktorarbeit sind Fraktionierungen refraktär-lithophiler Elemente in einzelnen Chondritkomponenten sowie zwischen Bulk-Chondriten, Achondriten und Planeten. Mittels laser ablation inductively coupled plasma mass spectrometry wurden die Gehalte der Seltenen Erden (REE) sowie von Nb, Ta, Zr und Hf analysiert. Einzelne Chondritkomponenten wurden in-situ an dem CV-Chondrit Leoville untersucht. Von den Bulk-Chondriten, Achondriten und terrestrischen Proben wurden Gesamtgesteinsproben durch Laserschmelzen unter aerodynamischer Levitation angefertigt. Die Untersuchung der verschiedenen Bestandteile des Leoville-Chondrits ergab, dass die refraktären Einschlüsse volatilitätskontrollierte fraktionierte REE group-II-Muster und subchondritische Nb/Ta-Verhältnisse aufweisen. Sie sind demzufolge aus einem residualen Gas entstanden, von dem zuvor eine ultrarefraktäre Komponente isoliert worden war. Chondren haben zumeist relativ unfraktionierte REE-Muster sowie unfraktionierte Zr/Hf- und Nb/Ta-Verhältnisse. Einige Typ-1-Chondren, die Al-reichen Chondren und die Chondritmatrix weisen jedoch fraktionierte REE-Muster auf. Dies ist ein Hinweis auf Beimengungen refraktären Materials mit REE group-II-Muster. Die Analysen an Bulk-Chondriten zeigen, dass kohlige Chondrite im Vergleich zu dem CI-Chondrit Orgueil charakteristische volatilitätskontrollierte REE-Muster (ultrarefraktär oder group-II) besitzen, was auf den Einbau refraktärer Komponenten mit fraktionierten Seltenen Erden zurückgeführt wurde. Die Mehrheit der gewöhnlichen, Rumuruti- und Enstatit-Chondrite hat dagegen relativ unfraktionierte REE-Muster. Es konnte gezeigt werden, dass sowohl gewöhnliche, Enstatit- und Rumuruti-Chondrite als auch Proben von Achondriten, Mars, Mond und Erde geringe negative Tm-Anomalien gegenüber dem CI-Chondrit Orgueil aufweisen. Die Objekte des inneren Sonnensystems wurden daher anhand ihrer relativen Gehalte an schweren Seltenen Erden (HREE) in zwei Gruppen eingeteilt: Ein kohliges und ein nichtkohliges Chondrit-Reservoir, dem auch die Achondrite, Mars, Erde und Mond angehören. Es wurde angenommen, dass die Objekte des nichtkohligen Chondrit-Reservoirs die HREE-Verhältnisse des Sonnensystems widerspiegeln; kohlige Chondrite haben dagegen variable Tm-Anomalien, welche durch den Eintrag fraktionierter refraktärer Komponenten in ihre Entstehungsregion zu erklären sind. CI-Chondrite, welche allgemein als die chemisch primitivste Chondritgruppe angesehen werden, hätten in diesem Fall eine positive Tm-Anomalie von 4,8 ± 0,9 % und stimmten somit chemisch nicht mit dem Sonnensystem überein. Durch eine Beimengung von nur 0,2 Gewichtsprozent einer refraktären Komponente mit REE group-II-Muster zu den CI-Chondriten konnte diese Tm-Anomalie erklärt werden.

Identiferoai:union.ndltd.org:uni-goettingen.de/oai:ediss.uni-goettingen.de:11858/00-1735-0000-0022-5F51-2
Date24 January 2014
CreatorsBendel, Verena
ContributorsPack, Andreas Prof. Dr.
Source SetsGeorg-August-Universität Göttingen
Languagedeu
Detected LanguageGerman
TypedoctoralThesis

Page generated in 0.0019 seconds