Return to search

Determination of the hydrogen peroxide concentration in rotenone induced dopaminergic cells using cyclic voltammetry and amplex red

Parkinson's disease (PD) is a neurodegenerative condition that affects millions of people worldwide. The exact etiology of PD is unknown. However, it is well established that environmental factors contribute to the onset of PD. In particular, chemicals such as the insecticide Rotenone have been shown to increase the death of dopaminergic (DA) neurons by increasing levels of reactive oxygen species (ROS). ROS such as hydrogen peroxide (H2O2) have been shown to be elevated above basal levels in PD patients. Currently, to measure H2O2 concentrations, a commercially available (Amplex® Red) fluorescent assay is used. However, the assay has limitations: it is not completely specific to hydrogen peroxide and can only measure extracellular ROS concentrations. This research focuses on testing an electrochemical sensor that uses cyclic voltammetry to quantitatively determine concentrations of H2O2 released from a cell culture. The sensor was first tested in normal cell culture conditions. Next, chemical interference was reduced and the sensor was optimized for accuracy by altering protein concentrations in the media. Finally, Rotenone was added to a cell culture to induce H2O2 production. Near real-time measurements of H2O2 were taken using the sensor and comparisons made to the fluorescent assay method. Overall, we are trying to determine if the electrochemical sensor can selectively and quantitatively measure H2O2 released from cells. Being able to track the production, migration and concentration of H2O2 in a cell can help researchers better understand its mechanism of action in cell death and oxidative damage, thus getting closer to finding a cure for PD.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2288
Date01 May 2012
CreatorsPatel, Kishan
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHIM 1990-2015

Page generated in 0.0016 seconds