Many problems in continuum mechanics, especially in the theory of elastic materials, lead to nonlinear partial differential equations. The nonconvexity of their underlying energy potential is a challenge for mathematical analysis, since convexity plays an important role in the classical theories of existence and regularity. In the last years one main point of interest was to develop techniques to circumvent these difficulties. One approach was to use different notions of convexity like quasi-- or polyconvexity, but most of the work was done only for static (time independent) equations. In this thesis we want to make some contributions concerning existence, regularity and numerical approximation of nonconvex dynamical problems.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-37269 |
Date | 28 November 2004 |
Creators | Rieger, Marc Oliver |
Contributors | Universität Leipzig, Fakultät für Mathematik und Informatik |
Publisher | Universitätsbibliothek Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0021 seconds