Dans cette thèse on aborde deux problèmes. Dans la première partie on considère des diffusions hypoelliptiques, à la fois sur une condition d'Hormander forte et faible. On trouve des estimations gaussiennes pour la densité de la loi de la solution à un temps court fixé. Un outil fondamental pour prouver ces estimations est le calcul de Malliavin, et en particulier on utilise des techniques développées récemment pour faire face à des problèmes de dégénérescence. Ensuite, grâce à ces estimations en temps court, on trouve des bornes inférieures et supérieures exponentielles sur la probabilité que la diffusion reste dans un petit tube autour d'une trajectoire déterministe jusqu'à un moment fixé. Dans ce cadre hypoelliptique, la forme du tube doit tenir compte du fait que la diffusion se déplace avec une vitesse différente dans les directions du coefficient de diffusion et dans les directions des crochets de Lie. Pour cette raison, on introduit une norme qui prend en compte ce comportement anisotrope, qui peut être adaptée aux cas d'Hormander fort et faible. Dans le cas Hormander fort on établit un lien entre cette norme et la distance de contrôle classique. Dans le cas Hormander faible on introduit une distance de contrôle équivalente appropriée. Dans la deuxième partie de la thèse, on travaille avec des modèles à volatilité stochastique avec retour à la moyenne, oú la volatilité est dirigée par un processus de saut. On suppose d'abord que les sauts suivent un processus de Poisson, et on considère la décroissance des corrélations croisées, théoriquement et empiriquement. Ceci nous amène à étudier un algorithme pour la détection de sauts de la volatilité. On considère ensuite un phénomène plus subtil largement observé dans les indices financiers: le "multiscaling" des moments, c'est-à-dire le fait que les moments d'ordre q des log-incréments du prix sur un temps h, ont une amplitude d'ordre h à une certaine puissance, qui est non linéaire dans q. On travaille avec des modèles oú la volatilité suit une EDS avec retour à la moyenne dirigée par un subordinateur de Lévy. On montre que le multiscaling se produit si la mesure caractéristique du Lévy a des queues de loi de puissance et le retour à la moyenne est superlinéaire à l'infini. Dans ce cas l'exposant de scaling est linéaire par morceaux / In this thesis we address two problems. In the first part we consider hypoelliptic diffusions, under both strong and weak Hormander condition. We find Gaussian estimates for the density of the law of the solution at a fixed, short time. A main tool to prove these estimates is Malliavin Calculus, in particular some techniques recently developed to deal with degenerate problems. We then use these short-time estimates to show exponential two-sided bounds for the probability that the diffusion remains in a small tube around a deterministic path up to a given time. In our hypoelliptic framework, the shape of the tube must reflect the fact the diffusion moves with a different speed in the direction of the diffusion coefficient and in the direction of the Lie brackets. For this reason we introduce a norm accounting of this anisotropic behavior, which can be adapted to both the strong and weak Hormander framework. We establish a connection between this norm and the standard control distance in the strong Hormander case. In the weak Hormander case, we introduce a suitable equivalent control distance. In the second part of the thesis we work with mean reverting stochastic volatility models, with a volatility driven by a jump process. We first suppose that the jumps follow a Poisson process, and consider the decay of cross asset correlations, both theoretically and empirically. This leads us to study an algorithm for the detection of jumps in the volatility profile. We then consider a more subtle phenomenon widely observed in financial indices: the multiscaling of moments, i.e. the fact that the q-moment of the log-increment of the price on a time lag of length h scales as h to a certain power of q, which is non-linear in q. We work with models where the volatility follows a mean reverting SDE driven by a Lévy subordinator. We show that multiscaling occurs if the characteristic measure of the Lévy has power law tails and the mean reversion is super-linear at infinity. In this case the scaling function is piecewise linear
Identifer | oai:union.ndltd.org:theses.fr/2015PESC1029 |
Date | 16 October 2015 |
Creators | Pigato, Paolo |
Contributors | Paris Est, Università di Padova, Bally, Vlad |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds