Return to search

Role of timber in the seismic resilience of existing URM buildings

The main topic of the thesis is the role of timber in the seismic resilience of unreinforced masonry (URM) buildings. The research addressed both existing timber components that can be encountered in URM buildings and timber-based retrofit solutions. The work presented herein can be split into two main phases.

In the first part of the research, the in-plane behavior of traditional wooden floors was analyzed by means of numerical static and dynamic simulations. Modelling strategies with different refinement levels were proposed and implemented to assess diaphragm in-plane strength and flexibility. Modelling was undertaken considering as-built diaphragms first and was then extended to diaphragms retrofitted by means of timber-based techniques. The influence of diaphragm construction details on their in-plane response was evaluated and timber-based retrofitting solutions were observed to be effective in mitigating in-plane diaphragm flexibility and in increasing in-plane diaphragm strength.

The second part of the PhD work was dedicated to investigate new retrofit solutions for URM buildings based on the use of engineered timber panels mechanically connected to the masonry. The first step saw the experimental testing of different types of timber-to-masonry connections considering both screw-type fasteners and adhesive anchors. In the second stage, full-scale masonry walls were tested in the as-built, retrofitted and repaired configurations, highlighting the benefits of the proposed technique on the in-plane response of the masonry walls.

Identiferoai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/258047
Date24 April 2020
CreatorsRizzi, Ermes
ContributorsRizzi, Ermes, Piazza, Maurizio, Giongo, Ivan
PublisherUniversità degli studi di Trento, place:Trento
Source SetsUniversità di Trento
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/openAccess
Relationfirstpage:1, lastpage:253, numberofpages:253

Page generated in 0.0021 seconds