The presented thesis on thermosensitive polymer gel is focused especially on a thermosensitive triblock copolymer, which is composed of hydrophobic polylactide, polyglycolid and hydrophilic polyethylene glycol (PLGA-PEG-PLGA). Thermosensitive copolymers are very attractive for their phase sol-gel transitions and gel-suspension transitions. The aqueous solution of this copolymer behaves like a sol at laboratory temperature and like a gel at body temperature. These systems are used as injectable carriers for targeted drug delivery with controlled release. However, the influence of the resulting polymer concentration and temperature on the thermosensitive hydrogel nanostructure was not yet fully studied. In the experimental part, the viscoelastic behavior of hydrogels was observed by dynamic rheological analysis at different polymer concentrations and temperature conditions. The average size and distribution of micelles of triblock copolymer in aqueous solution were measured using dynamic light scattering technique. Characterization of fibrous micelles was complemented by imaging technique, cryogenic transmission electron microscopy.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:295707 |
Date | January 2017 |
Creators | Pelánová, Markéta |
Contributors | Smilek, Jiří, Chamradová, Ivana |
Publisher | Vysoké učení technické v Brně. Fakulta chemická |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0032 seconds