Return to search

3D Cranial Morphometry, Sensory Ecology and Climate Change in African Rodents

PhD (Zoology) / Department of Zoology / The order Rodentia is the most speciose group of mammals with muroids being the most diverse superfamily. Since they are represented in arboreal, semiaquatic, subterranean and terrestrial niches, rodents may exhibit morphological traits reflecting their adaptations to such diverse environments. This thesis focuses on the morphology of the endocranium, auditory bulla and cochlea in three tribes (Otomyini, Taterillini and Gerbillini) representing 10 species of African rodents, concentrating on their variability, function and adaptability, using micro-CT imaging and 3D shape comparative methods. Additionally, variations in cranial size were also studied in respective of global warming and climatic variables. Morphological changes/variations are a result of environmental change, therefore each chapter in this study details the effect of environmental change (in space and time) on different morphological traits i.e. general cranial size (chapter 2), cochlea and auditory bulla (chapter 3) and endocranial size and shape (chapter 4). With chapter 2 dealing specifically with climate change in its strict sense and the remaining two chapters looking at different environmental gradients.
Chapter 2 tests the applicability of the “third universal response to warming” (i.e. declining body size) and the Resource Rule in two murid subfamilies, Murinae and Gerbillinae. The study shows that the third response is not as universal as only one species conformed to this response. Further, food availability (Resource Rule) was shown to be the more important factor correlated with body size variations in rodent species than Bergmann’s Rule. Chapter 3 looks at the auditory bulla and cochlea, the morphological traits that play a role in hearing capabilities of rodents. I found, with some exceptions, that bulla and cochlea modifications between species could be explained by environment, phylogeny and/or allometry. In addition, I concluded that true desert adapted laminate-toothed rats and gerbils use both bulla and associated cochlea hypertrophy. Chapter 4 shows larger brain size in Taterillini and two species of Otomyini, with life histories and environment being the most probably factors responsible for
xiv
this. Using a novel method of diffeomorphism (deformation models), there was more variation in endocranial morphology between the gerbils and laminate-toothed rats than within them with olfactory bulb, paraflocculi, and posterior ventral cortex showing the most variability. Overall, this thesis shows that variations in the morphological traits studied are strongly influenced by the environment and function. / NRF

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:univen/oai:univendspace.univen.ac.za:11602/1314
Date15 May 2019
CreatorsNengovhela, Aluwani
ContributorsTaylor,, Peter, Braga, Jose
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format1 online resource(xiv, 191 leaves: color ilustrations, color maps)
RightsUniversity of Venda

Page generated in 0.0028 seconds