In this work, the time varying stresses in a Howden axial flow fan are obtained by finite element analyses. Dynamic substructuring is used to obtain accurate values of the stresses in the threads of the blade shaft, the component which connects the blade with the hub. Three different global models are used to compare the influence of neglecting the fan shaft and the stiffness influence of the centrifugal force. The relative displacements, which are obtained from the global models, have been used as boundary condition in the detailed models. The detailed models are used to obtain the Von Mises stresses in the root of the threads of the blade shaft. Finally the results of the three global models are compared with experimental measured data provided by Howden. The experimental data results in the highest Von Mises stresses. The model with the fan shaft and the stiffness influence of the centrifugal force gives values for the Von Mises stresses which are approximately twenty percent lower. The model without the fan shaft results in the lowest stresses which are approximately forty percent lower than the stresses obtained using the measured data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-43752 |
Date | January 2015 |
Creators | van Mierlo, Tim, Żywalewski, Rafal |
Publisher | Linnéuniversitetet, Institutionen för maskinteknik (MT), Linnéuniversitetet, Institutionen för maskinteknik (MT) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds