Return to search

RTP Compatible: Two Models of Video Streaming Over VANETs

Because Vehicular Ad Hoc Networks (VANETs) often have a high packet loss rate, the formerly used protocol for video streaming, Real-time Transport Protocol (RTP), is no longer suitable for this specific environment. Previous conducted research has offered many new protocols to solve this problem; however, most of them cannot make full use of the existing Internet video streaming resources like RTP servers.

Our work proposes two models to solve this compatibility issue. The first model is called the converter model. Based on this model, we first modify RTP using Erasure Coding (EC) technique in order to adapt it to the high packet loss rate of VANETs. This newly developed protocol is called EC-RTP. And, we then developed two converters. The first converter stands on the boundary between the Internet and VANETs. It receives the RTP packets which sent from Internet. And then it translates them to the EC-RTP packets. These packets are transported over the VANETs. The second converter receives these EC-RTP packets, translates them back to the RTP packets. It then sends them to the RTP player, so that the RTP player can play these packets. To make EC-RTP can carry more kinds of video streams other than RTP, we proposed a second model. The second model is called the redundancy tunnel. Based on this model, we let the protocol between the two converters carry RTP protocol as its payload. We use the same technique as we have used to modify RTP. At last, we did some experiments with Android tablets. The experiment results show our solution can use the same player to play the same video resources as RTP does. However, unlike RTP, it can reduce packet loss rate.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/31467
Date January 2014
CreatorsFang, Zhifei
ContributorsBoukerche, Azzedine
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.066 seconds