A parametrical study is performed of coolant dump gas ejectors for a sandwich rocket nozzle design. Five geometrical variations are simulated in four ambient conditions (static, subsonic, supersonic, vacuum) using an in-house CFD solver. The test cases are compared with a baseline case and the resulting thrust and ISP are evaluated on a local and global level. A longer dump wall is found to give the best performance in all ambient cases, with a second possibility of reducing the circumference of the nozzle end stiffener. The possibility of post-ejection coolant gas combustion is encountered for high ambient pressure, high subsonic velocity flight.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-128528 |
Date | January 2013 |
Creators | Kristmundson, Darri |
Publisher | KTH, Kraft- och värmeteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds