Return to search

[en] RANKING OF WEB PAGES BY LEARNING MULTIPLE LATENT CATEGORIES / [pt] CLASSIFICAÇÃO DE PÁGINAS WEB POR APRENDIZAGEM DE MÚLTIPLAS CATEGORIAS LATENTES

[pt] O crescimento explosivo e a acessibilidade generalizada da World Wide
Web (WWW) levaram ao aumento da atividade de pesquisa na área da
recuperação de informação para páginas Web. A WWW é um rico e imenso
ambiente em que as páginas se assemelham a uma comunidade grande de
elementos conectada através de hiperlinks em razão da semelhança entre
o conteúdo das páginas, a popularidade da página, a autoridade sobre o
assunto e assim por diante, sabendo-se que, em verdade, quando um autor
de uma página a vincula à outra, está concebendo-a como importante
para si. Por isso, a estrutura de hiperlink da WWW é conhecida por
melhorar significativamente o desempenho das pesquisas para além do uso
de estatísticas de distribuição simples de texto. Nesse sentido, a abordagem
Hyperlink Induced Topic Search (HITS) introduz duas categorias básicas
de páginas Web, hubs e autoridades, que revelam algumas informações
semânticas ocultas a partir da estrutura de hiperlink. Em 2005, fizemos uma
primeira extensão do HITS, denominada de Extended Hyperlink Induced
Topic Search (XHITS), que inseriu duas novas categorias de páginas Web,
quais sejam, novidades e portais. Na presente tese, revisamos o XHITS,
transformando-o em uma generalização do HITS, ampliando o modelo
de duas categorias para várias e apresentando um algoritmo eficiente de
aprendizagem de máquina para calibrar o modelo proposto valendo-se de
múltiplas categorias latentes. As descobertas aqui expostas indicam que a
nova abordagem de aprendizagem fornece um modelo XHITS mais preciso.
É importante registrar, por fim, que os experimentos realizados com a coleção ClueWeb09 25TB de páginas da WWW, baixadas em 2009, mostram que o XHITS pode melhorar significativamente a eficácia da pesquisa Web e produzir resultados comparáveis aos do TREC 2009/2010 Web Track,
colocando-o na sexta posição, conforme os resultados publicados. / [en] The rapid growth and generalized accessibility of the World Wide Web
(WWW) have led to an increase in research in the field of the information
retrieval for Web pages. The WWW is an immense and prodigious environment
in which Web pages resemble a huge community of elements. These
elements are connected via hyperlinks on the basis of similarity between the
content of the pages, the popularity of a given page, the extent to which the
information provided is authoritative in relation to a given field etc. In fact,
when the author of a Web page links it to another, s/he is acknowledging
the importance of the linked page to his/her information. As such the hyperlink
structure of the WWW significantly improves research performance
beyond the use of simple text distribution statistics. To this effect, the HITS
approach introduces two basic categories of Web pages, hubs and authorities
which uncover certain hidden semantic information using the hyperlink
structure. In 2005, we made a first extension of HITS, called Extended Hyperlink
Induced Topic Search (XHITS), which inserted two new categories
of Web pages, which are novelties and portals. In this thesis, we revised the
XHITS, transforming it into a generalization of HITS, broadening the model
from two categories to various and presenting an efficient machine learning
algorithm to calibrate the proposed model using multiple latent categories.
The findings we set out here indicate that the new learning approach
provides a more precise XHITS model. It is important to note, in closing,
that experiments with the ClueWeb09 25TB collection of Web pages,
downloaded in 2009, demonstrated that the XHITS is capable of significantly
improving Web research efficiency and producing results comparable
to those of the TREC 2009/2010 Web Track.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:19540
Date17 May 2012
CreatorsFRANCISCO BENJAMIM FILHO
ContributorsRUY LUIZ MILIDIU
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.0025 seconds