Return to search

Sémantická segmentace obrazu pomocí konvolučních neuronových sítí / Semantic segmentation of images using convolutional neural networks

Tato práce se zabývá rešerší a implementací vybraných architektur konvolučních neuronových sítí pro segmentaci obrazu. V první části jsou shrnuty základní pojmy z teorie neuronových sítí. Tato část také představuje silné stránky konvolučních sítí v oblasti rozpoznávání obrazových dat. Teoretická část je uzavřena rešerší zaměřenou na konkrétní architekturu používanou na segmentaci scén. Implementace této architektury a jejích variant v Caffe je převzata a upravena pro konkrétní použití v praktické části práce. Nedílnou součástí tohoto procesu jsou kroky potřebné ke správnému nastavení softwarového a hardwarového prostředí. Příslušná kapitola proto poskytuje přesný návod, který ocení zejména noví uživatelé Linuxu. Pro trénování všech variant vybrané sítě je vytvořen vlastní dataset obsahující 2600 obrázků. Je také provedeno několik nastavení původní implementace, zvláště pro účely použití předtrénovaných parametrů. Trénování zahrnuje výběr hyperparametrů, jakými jsou například typ optimalizačního algoritmu a rychlost učení. Na závěr je provedeno vyhodnocení výkonu a výpočtové náročnosti všech natrénovaných sítí na testovacím datasetu.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:417759
Date January 2020
CreatorsŠpila, Filip
ContributorsVěchet, Stanislav, Krejsa, Jiří
PublisherVysoké učení technické v Brně. Fakulta strojního inženýrství
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageUnknown
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0094 seconds