Return to search

Numerical modeling of dry wear : Experimental study of fretting wear, fretting wear simulations with debris entrapped and industrial applications of fretting wear models / Modélisation numérique de l'usure à sec : Étude expérimentale de l'usure de fretting, simulations d'usure par frottement avec des applications de débris piégés et industrielles de modèles d'usure de fretting

De nombreux modèles numériques sont proposés dans la littérature en utilisant des méthodes d'éléments finis et d'éléments finis discrets pour étudier l'usure par frottement, ils incluent à peine l'effet des débris d'usure. Ces modèles étant coûteux en termes de calcul, simuler un grand nombre de cycles d'usure par frottement n'est pas réalisable dans la pratique. Une nouvelle méthodologie est proposée qui ne nécessite que des propriétés de matériau en vrac comme les coefficients de frottement / usure et utilise des méthodes semi-analytiques pour simuler l'usure par frottement avec des débris piégés. Dans cette approche, les débris sont supposés être attachés à l'une des surfaces pendant le processus de fretting. Les résultats obtenus à partir de cette approche ont été comparés avec des expériences de fretting. La méthode proposée permet de saisir la profondeur d'usure et la largeur des cicatrices, et les résultats sont très proches de ceux observés dans les expériences. L'assemblage des soupapes des moteurs à combustion subit une usure par frottement en raison d'un phénomène complexe impliquant une rigidité structurelle et une tribologie de contact. L'usure des soupapes a de nombreux effets néfastes sur les performances du moteur. Il provoque une récession de la soupape entraînant des changements dans les connexions du mécanisme d'entraînement de la soupape, ce qui perturbe l'ouverture et la fermeture des soupapes. Avec des normes d'émission strictes, l'utilisation de lubrifiant pour réduire la friction au contact est limitée. Si l'usure à travers la circonférence n'est pas uniforme, il y aura une fuite de gaz et le moteur donne moins de puissance. Il est nécessaire de bien comprendre la raison de l'usure des soupapes et de développer un modèle numérique capable de prédire l'usure par frottement de la soupape pour le nombre d'heures de fonctionnement donné. Des expériences ont été réalisées pour comprendre le mécanisme d'usure et calculer les coefficients d'usure qui peuvent être utilisés dans le modèle numérique. Un modèle d'usure numérique est construit qui capture la rigidité structurelle de l'ensemble de soupape et le mécanisme d'usure au contact du siège. / Many numerical models are proposed in the literature using finite element and finite discrete element methods to study fretting wear, they barely include the effect of wear debris. These models being computationally expensive, simulating large number of fretting wear cycles is not practically feasible. A new methodology is proposed which needs only bulk material properties like friction/wear coefficients and uses semi-analytical methods to simulate fretting wear with entrapped debris. In this approach, debris are assumed to be attached to one of the surfaces during the fretting process. The results obtained from this approach were compared with fretting experiments. The proposed method permits to capture the wear depth and scar width, and results are very close to that observed in the experiments. Valve assembly of combustion engines undergo fretting wear due to a complex phenomenon involving structural stiffness and contact tribology. Valve wear has many detrimental effects on the engine performance. It causes valve recession leading to changes in connections of valve drive train in turn disturbing the opening and closing of valves. With stringent emission norms, usage of lubricant to reduce friction at the contact is restricted. If the wear across the circumference is not uniform, there will be leakage of gas and the engine gives lesser power output. There is a need to thoroughly understand the reason for valve wear and develop a numerical model that can predict valve fretting wear for the given number of operating hours. Experiments were performed to understand the wear mechanism and derive wear coefficients that can be used in the numerical model. A numerical wear model is built that captures structural stiffness of the valve assembly and wear mechanism at seat contact.

Identiferoai:union.ndltd.org:theses.fr/2017LYSEI137
Date15 December 2017
CreatorsDone, Vamshidhar
ContributorsLyon, Nélias, Daniel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds