Return to search

Semi-Supervised Gait Recognition

In this work, we examine semi-supervised learning for Gait recognition with a limited number of labeled samples. Our research focus on two distinct aspects for limited labels, 1)closed-set: with limited labeled samples per individual, and 2) open-set: with limited labeled individuals. We find open-set poses greater challenge compared to closed-set thus, having more labeled ids is important for performance than having more labeled samples per id.
Moreover, obtaining labeled samples for a large number of individuals is usually more challenging, therefore limited id setup (closed-setup) is more important to study where most of the training samples belong to unknown ids. We further analyze that existing semi-supervised learning approaches are not well suited for scenario where unlabeled samples belong to novel ids. We propose a simple prototypical self-training approach to solve this problem, where, we integrate semi-supervised learning for closed set setting with self-training which can effectively utilize unlabeled samples from unknown ids.
To further alleviate the challenges of limited labeled samples, we explore the role of synthetic data where we utilize diffusion model to generate samples from both known and unknown ids. We perform our experiments on two different Gait recognition benchmarks, CASIA-B and OUMVLP, and provide a comprehensive evaluation of the proposed method. The proposed approach is effective and generalizable for both closed and open-set settings. With merely 20% of labeled samples, we were able to achieve performance competitive to supervised methods utilizing 100% labeled samples while outperforming existing semi-supervised methods.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1251
Date01 January 2024
CreatorsMitra, Sirshapan
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Thesis and Dissertation 2023-2024
RightsIn copyright

Page generated in 0.0019 seconds