The work is concerned with the development of a multi-stage corrosion fatigue lifetime model, with emphasis on pitting as a precursor to cracking. The model is based upon the quantitative evaluation of damage during the overall corrosion fatigue process. The fatigue response of as-received API 5L X65 linepipe steel has been investigated in terms of the evolution of damage during pit development, pit-to-crack transition and crack propagation. Micro-potentiostatic polarisation was conducted to evaluate role of stress on pit development. Crack growth rate measurements were conducted on pre-pitted specimens, which were tested in air and brine, to evaluate the initiation and propagation behaviour of cracks emanating from artificial pits. Finite element analysis was undertaken to evaluate the stress and strain distribution associated with the pits. A cellular automata finite element model was also developed for predicting corrosion fatigue damage. Pit growth rate was enhanced under stress. It was considered that the strain localisation effect of the pit facilitated strain-assisted dissolution. In air, cracks initiated predominantly from the pit mouth. FEA results indicated that this was due to localisation of strain towards the pit mouth. In corrosion fatigue, cracks tended to initiate at the pit base at low stress and at the pit mouth at higher stresses. Crack initiation lifetimes were shorter in the aggressive environment compared to air and the effect of the environment on crack initiation lifetime was lower at higher stress levels. Crack initiation lifetime for double pits generally decreased with decreasing pit-to-pit separation distance. The microstructure was observed to influence crack growth behaviour in air particularly in the early stages when cracks were short. The acceleration and retardation in crack growth were attributed to the resistance of grain boundaries to crack advance. Cracks sometimes arrested at these barriers and became non-propagating. Introduction of the environment for a short period appear to eliminate the resistance of the microstructural barriers thus promoting re-propagation of the previously arrested crack. The continued crack propagation after the removal of the environment suggests that the influence of the environment is more important in the early stages of crack growth. Crack growth rates were higher in the aggressive environment than in air. The degree of environmental enhancement of crack growth was found to be greater at lower stress levels and at short crack lengths. Oxide-induced crack closure and crack coalescence were two mechanisms that also affected crack growth behaviour.2-D cellular automata finite element simulation results, with and without stress, show good agreement agreed with experiments i.e. pit depth and pit aspect ratio increase with time. Results from 3-D cellular automata simulations of pits are also consistent with experiments. Fatigue lifetimes were significantly shorter (i) in the brine environment than in air and (ii) for specimens with double pits compared to single pits of similar depth. Fatigue strength in air was found to decrease with increasing pit depth. Corrosion fatigue lifetimes predicted based upon the developed model showed good agreement with the experimental lifetimes.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:679996 |
Date | January 2016 |
Creators | Fatoba, Olusegun Oludare |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/experimental-and-modelling-studies-of-corrosion-fatigue-damage-in-a-linepipe-steel(075ec5a1-f7a1-4b1c-b5d7-99ff3472d21d).html |
Page generated in 0.0023 seconds