Return to search

Pathophysiology of lacunar stroke : ischaemic stroke or blood brain barrier dysfunction?

Lacunar strokes account for approximately a quarter of all ischaemic strokes and traditionally are thought to result from occlusion of a small deep perforating arteriole in the brain. Lacunar infarcts can be up to 2cm in diameter and are found in deep brain structures such as the thalamus and internal capsule. Despite their prevalence and specific accompanying clinical syndromes, the cause of lacunar stroke and its associated vascular pathology remain unclear. Many hypotheses as to the cause exist, which fall broadly into two categories; firstly, a direct occlusion via emboli or thrombus usually from a cardiac or large artery source, microatheroma (intrinsic lenticulostriate occlusion) or macroatheroma (parent artery occlusion) all operating primarily via ischaemia. Secondly, there could be an indirect occlusion resulting from vasospasm, endothelial dysfunction or other forms of endovascular damage (e.g. inflammation). Therefore the question of whether the resulting lesions are truly “ischaemic” or actually arise secondary to an alternative process is still under debate. To clarify the chain of pathological events ultimately resulting in lacunar stroke, in this thesis I firstly undertook a systematic assessment of human lacunar stroke pathology literature to determine the information currently available and the quality of these studies (including terminology). The majority of these studies were performed in patients who had died long after their stroke making it difficult to determine the early changes, and there were few patients with a clinically verified lacunar syndrome. Therefore I adopted alternative approaches. In this thesis, I systematically looked for all potential experimental models of lacunar stroke and identified what appears at present to be the most pertinent - the spontaneous pathology of the stroke-prone spontaneously hypertensive rat (SHRSP). However, the cerebral pathology described in this model to date is biased towards end stage pathology, with little information concerning the microvasculature (as opposed to the brain parenchyma) and confounding by use of salt to exacerbate pathology. Therefore, the aim of the experimental work in this thesis was to assess pathological changes within the cerebral vasculature and brain parenchyma of the SHRSP across a variety of ages (particularly young pre-hypertensive animals) and to look at the effects of salt loading on both the SHRSP and its parent strain (the Wistar Kyoto rat - WKY). Three related studies (qualitative and quantitative histology, immunohistochemistry and a microarray study of gene expression confirmed by quantitative PCR), revealed that the presence of inflammation (via significant changes in gene expression in the acute phase response pathway and increased immunostaining of activated microglia and astrocytes) plus alterations in vascular tone regulation, (via genetic alteration of the nitric oxide signaling pathway probably secondary to abnormal oxidative state), impaired structural integrity of the blood brain barrier (histological evidence of endothelial dysfunction and significantly decreased Claudin-5 staining) and reduced plasma oncotic potential (reduced albumin gene expression) are all present in the native SHRSP at 5 weeks of age, i.e. well before the onset of hypertension and without exposure to high levels of salt. We also confirmed previous findings of vessel remodelling at older ages likely as a secondary response to hypertension (thickened arteriolar smooth muscle, increased smooth muscle actin immunostaining). Furthermore, we found not only that salt exacerbated the changes see in the SHRSP at 21 weeks, but also that the control animals (WKY) exposed to a high salt intake developed features of cerebral microvascular pathology independently of hypertension (e.g. white matter vacuolation and significant changes in myelin basic protein expression). In conclusion, via the assessment of the most pertinent experimental model of lacunar stroke currently available, this thesis has provided two very important pieces of evidence: firstly that cerebral small vessel disease is primarily caused by a non-ischaemic mechanism and that any thrombotic vessel lesions occur as secondary end stage pathology; secondly that these features are not simply the consequence of exposure to raised blood pressure but occur secondary to abnormal endothelial integrity, inflammation, abnormal oxidative pathways influencing regulation of vascular tone and low plasma oncotic pressure. Patients with an innate susceptibility to increased blood brain barrier permeability and/or chronic inflammation could therefore have a higher risk of developing small vessel disease pathology and ultimately lacunar stroke and other features of small vessel disease. Research, addressing whether lacunar stroke patients should be treated differently to those with atherothromboembolic stroke is urgently needed.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563917
Date January 2012
CreatorsBailey, Emma Louise
ContributorsWardlaw, Joanna. ; Smith, Colin. ; Sudlow, Catherine
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/6529

Page generated in 0.0019 seconds