The control center is a critical location in the power system infrastructure. Decisions regarding the power system’s operation and control are often made from the control center. These control actions are made possible through SCADA communication. This capability however makes the power system vulnerable to cyber attacks. Most of the decisions taken by the control center dwell on the measurement data received from substations. These measurements estimate the state of the power grid. Measurement-based cyber attacks have been well studied to be a major threat to control center operations. Stealthy false data injection attacks are known to evade bad data detection. Due to the limitations with bad data detection at the control center, a lot of approaches have been explored especially in the cyber layer to detect measurement-based attacks. Though helpful, these approaches do not look at the physical layer. This study proposes an anomaly detection system for the control center that operates on the laws of physics. The system also identifies the specific falsified measurement and proposes its estimated measurement value. / United States Department of Energy (DOE)
National Renewable Energy Laboratory (NREL) / Master of Science / Electricity is an essential need for human life. The power grid is one of the most important human inventions that fueled other technological innovations in the industrial revolution. Changing demands in usage have added to its operational complexity. Several modifications have been made to the power grid since its invention to make it robust and operationally safe. Integration of ICT has significantly improved the monitoring and operability of the power grid. Improvements through ICT have also exposed the power grid to cyber vulnerabilities. Since the power system is a critical infrastructure, there is a growing need to keep it secure and operable for the long run. The control center of the power system serves mainly as the decision-making hub of the grid. It operates through a communication link with the various dispersed devices and substations on the grid. This interconnection makes remote control and monitoring decisions possible from the control center. Data from the substations through the control center are also used in electricity markets and economic dispatch. The control center is however susceptible to cyber-attacks, particularly measurement-based attacks. When attackers launch measurement attacks, their goal is to force control actions from the control center that can make the system unstable. They make use of the vulnerabilities in the cyber layer to launch these attacks. They can inject falsified data packets through this link to usurp correct ones upon arrival at the control center. This study looks at an anomaly detection system that can detect falsified measurements at the control center. It will also indicate the specific falsified measurements and provide an estimated value for further analysis.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/119326 |
Date | 06 1900 |
Creators | Gyamfi, Cliff Oduro |
Contributors | Electrical and Computer Engineering, Liu, Chen-Ching, Centeno, Virgilio A., Mehrizi-Sani, Ali |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis, Text |
Format | ETD, application/pdf, application/pdf |
Rights | CC0 1.0 Universal, http://creativecommons.org/publicdomain/zero/1.0/ |
Page generated in 0.0025 seconds