abstract: Modern intelligent transportation systems (ITS) make driving more efficient, easier, and safer. Knowledge of real-time traffic conditions is a critical input for operating ITS. Real-time freeway traffic state estimation approaches have been used to quantify traffic conditions given limited amount of data collected by traffic sensors. Currently, almost all real-time estimation methods have been developed for estimating laterally aggregated traffic conditions in a roadway segment using link-based models which assume homogeneous conditions across multiple lanes. However, with new advances and applications of ITS, knowledge of lane-based traffic conditions is becoming important, where the traffic condition differences among lanes are recognized. In addition, most of the current real-time freeway traffic estimators consider only data from loop detectors. This dissertation develops a bi-level data fusion approach using heterogeneous multi-sensor measurements to estimate real-time lane-based freeway traffic conditions, which integrates a link-level model-based estimator and a lane-level data-driven estimator.
Macroscopic traffic flow models describe the evolution of aggregated traffic characteristics over time and space, which are required by model-based traffic estimation approaches. Since current first-order Lagrangian macroscopic traffic flow model has some unrealistic implicit assumptions (e.g., infinite acceleration), a second-order Lagrangian macroscopic traffic flow model has been developed by incorporating drivers’ anticipation and reaction delay. A multi-sensor extended Kalman filter (MEKF) algorithm has been developed to combine heterogeneous measurements from multiple sources. A MEKF-based traffic estimator, explicitly using the developed second-order traffic flow model and measurements from loop detectors as well as GPS trajectories for given fractions of vehicles, has been proposed which gives real-time link-level traffic estimates in the bi-level estimation system.
The lane-level estimation in the bi-level data fusion system uses the link-level estimates as priors and adopts a data-driven approach to obtain lane-based estimates, where now heterogeneous multi-sensor measurements are combined using parallel spatial-temporal filters.
Experimental analysis shows that the second-order model can more realistically reproduce real world traffic flow patterns (e.g., stop-and-go waves). The MEKF-based link-level estimator exhibits more accurate results than the estimator that uses only a single data source. Evaluation of the lane-level estimator demonstrates that the proposed new bi-level multi-sensor data fusion system can provide very good estimates of real-time lane-based traffic conditions. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2015
Identifer | oai:union.ndltd.org:asu.edu/item:29941 |
Date | January 2015 |
Contributors | Zhou, Zhuoyang (Author), Mirchandani, Pitu (Advisor), Askin, Ronald (Committee member), Runger, George (Committee member), Zhou, Xuesong (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 198 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0019 seconds