Return to search

Modeling, Simulation, Dynamic Optimization and Control of a Semibatch Emulsion Polymerization Process / Modélisation, simulation, optimisation dynamique et commande d'un procédé semibatch de polymérisation en émulsion

Dans ce travail, la modélisation, la simulation, l'optimisation dynamique et la commande nonlinéaire d'un procédé industriel de polymérisation en émulsion produisant du polyacétate de vinyle (PVAc) sont étudiées. La réaction est modélisée comme un système à deux phases constitué d'une phase aqueuse et une phase particulaire. Un modèle détaillé est développé pour calculer la masse molaire moyenne en poids, la masse molaire moyenne en nombre et la dispersité. Les moments de chaînes en croissance et terminés sont utilisés pour représenter l'état du polymère et pour calculer la distribution de masse molaire (MWD). L'étude de cas correspond à un réacteur industriel fonctionnant dans une entreprise de produits chimiques à Bogotá. Un réacteur à l'échelle industrielle (11 m3 de capacité) est simulé dans lequel une réaction semi-batch de polymérisation en émulsion de l'acétate de vinyle est effectuée. Le problème d'optimisation dynamique est résolu directement en utilisant un solveur de programmation non linéaire. L'intégration des équations différentielles est faite en utilisant la méthode de Runge-Kutta. Trois problèmes d'optimisation différents sont résolus, depuis le plus simpliste (une seule variable d'optimisation : la température du réacteur) au plus complexe (trois variables d'optimisation : la température du réacteur, le débit de l'amorceur et le débit du monomère) en vue de minimiser le temps final de réaction. Une réduction de 25% du temps de traitement par batchs est réalisée par rapport aux conditions normales de fonctionnement appliquées dans l'entreprise. Les résultats montrent qu'il est possible de minimiser la durée de réaction alors que certaines qualités de polymères souhaitées (conversion, masse molaire et contenu en solides) satisfont les contraintes définies. Une technique de commande non linéaire géométrique à l'aide de la linéarisation entrée/sortie est adaptée à la régulation de la température du réacteur. Un filtre Kalman étendu (EKF) est mis en oeuvre pour estimer les états non mesurés et il est testé dans différents cas, dont une étude de robustesse où des erreurs du modèle sont introduites pour vérifier son bon fonctionnement. Après vérification des performances du régulateur, certains changements d'opération du procédé ont été proposés afin d'améliorer la productivité du procédé et la qualité du polymère. Enfin, le profil de température optimale et les politiques d'alimentation optimales de débits du monomère et de l'amorceur, obtenues dans l'étape d'optimisation dynamique, ont fourni les consignes optimales pour la commande non linéaire. Les résultats montrent que le régulateur non linéaire conçu ici convient pour suivre les trajectoires optimales de température calculées précédemment / In this work, modeling, simulation, dynamic optimization and nonlinear control of an industrial emulsion polymerization process to produce poly-vinyl acetate (PVAc) are proposed. The reaction is modeled as a two-phase system composed of an aqueous phase and a particle phase. A detailed model is used to calculate the weight average molecular weight, the number average molecular weight and the dispersity. The moments of the growing and dead chains are used to represent the state of the polymer and to calculate the molecular weight distribution (MWD). The case study corresponds to an industrial reactor operated at a chemical company in Bogotá. An industrial scale reactor (11 m3 of capacity) is simulated where a semi-batch emulsion polymerization reaction of vinyl acetate is performed. Dynamic optimization problem is solved directly using a Nonlinear Programming solver. Integration of differential equations is made using Runge-Kutta method. Three different optimization problems are solved from the more simplistic (only one control variable: reactor temperature) to the more complex (three control variables : reactor temperature, initiator flow rate and monomer flow rate) in order to minimize the reaction time. A reduction of 25% of the batch time is achieved with respect to the normal operating conditions applied at the company. The results show that is possible to minimize the reaction time while some polymer desired qualities (conversion, molecular weight and solids content) satisfy the defined constraints. A nonlinear geometric control technique by using input/output linearization is adapted to the reactor temperature control. An extended Kalman filter (EKF) is implemented to estimate unmeasured states and it is tested in different cases including a robustness study where model errors are introduced to verify its good performance. After verification of controller performance, some process changes were proposed in order to improve process productivity and polymer quality. Finally, the optimal temperature profile and optimal feed policies of the monomer and initiator, obtained in a dynamic optimization step, are used to provide the optimal set points for the nonlinear control. The results show that the nonlinear controller designed here is appropriate to follow the optimal temperature trajectories calculated previously

Identiferoai:union.ndltd.org:theses.fr/2014LORR0036
Date03 June 2014
CreatorsGil, Iván-Dario
ContributorsUniversité de Lorraine, Universidad nacional de Colombia, Corriou, Jean-Pierre, Vargas Saenz, Julio Cesar
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds