A phasor-only estimator carries with it intrinsic improvements over its SCADA analogue with respect to performance and reliability. However, insuring the quality of the data stream which leaves the linear estimator is crucial to establishing it as the front end of an EMS system and network applications which employ synchrophasor data. This can be accomplished using a two-fold solution: the pre-processing of phasor data before it arrives at the linear estimator and the by developing a synchrophasor-only dynamic state estimator as a mechanism for bad data detection and identification. In order to realize these algorithms, this dissertation develops a computationally simple model of the dynamics of the power system which fits neatly into the existing linear state estimation formulation. The algorithms are then tested on field data from PMUs installed on the Dominion Virginia Power EHV network. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/51548 |
Date | 30 August 2013 |
Creators | Jones, Kevin David |
Contributors | Electrical and Computer Engineering, Thorp, James S., Gardner, Robert Matthew, Shukla, Sandeep K., Prather, Carl L., Centeno, Virgilio A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds